Graphs – Part 1

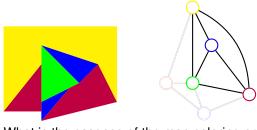
CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 5

Ref: Note 5

Graph Idea: Map Coloring



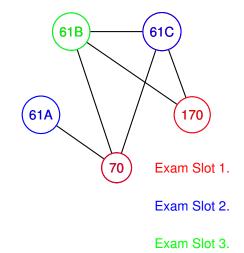
What is the essence of the map coloring problem? Regions ... connected by borders No two regions connected by a border can use the same color Four colors used here – can we do better? Yes! Three colors. Now add this – three colors? Yes! Now this? Connect... Three colors? No! Need four.

Remember: More than four never needed for a map (in the plane).

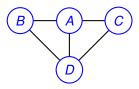
Scheduling: Coloring

Problem: Scheduling Exams

 $\Rightarrow~$ What courses are students simultaneously enrolled in?



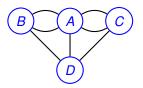
Graphs: Definitions



 $\begin{array}{l} \text{Graph: } G = (V, E) \\ V = \text{set of vertices} \\ \{A, B, C, D\} \\ E \subseteq V \times V \text{: set of edges} \\ \{\{A, B\}, \{A, C\}, \{B, D\}, \{A, D\}, \{C, D\}\} \end{array}$

Simple graph No "parallel edges" No self-loops (i.e., edge {A,A})

If not stated, a graph is a simple graph

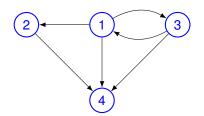


Variant: Multi-graph

Edges are a *multiset* Duplicates are allowed

CS 70: (usually) simple graphs

Directed Graphs



G = (V, E) V = set of vertices $\{1,2,3,4\}$ E = ordered pairs of vertices $\{(1,2), (1,3), (3,1), (1,4), (2,4), (3,4)\}$ Can't have duplicates: No (1,2) and (1,2)

Can't have duplicates: No (1,2) and (1,2)Can have both directions: (1,3) and (3,1)

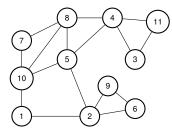
One way streets Tournament: 1 beats 2, ... Precedence: 1 is before 2, ...

Social Network: Directed? Undirected? Friends: Likes:

Graph Concepts and Definitions

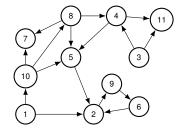
Graph: G = (V, E)

Terminology: neighbors, adjacent, incident, degree, in-degree, out-degree



- *u* is neighbor of *v* if $\{u, v\} \in E$ Neighbors of 10?
- Vertex v is adjacent to each neighbor
- Edge $\{u, v\}$ is incident to u and vEdge $\{10, 5\}$ is incident to:

Degree of vertex *u* is number of incident edges Degree of vertex 10?

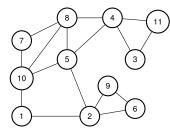


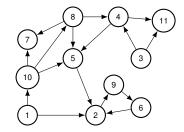
Directed graph: In-degree is # of edges to Out-degree is # of edges from In-degree of 10? Out-degree of 10?

Graph Concepts and Definitions - Questions

Graph: G = (V, E)

Terminology: neighbors, adjacent, incident, degree, in-degree, out-degree





Edge $\{8,5\}$ is incident to:

- (A) Vertex 8
- (B) Vertex 5
- (C) Edge $\{8,5\}$
- (D) Edge {8,4}
- (E) Vertex 10

The degree of a vertex is:

- (A) The number of edges incident to it
- (B) The number of neighbors of v
- (C) The number of vertices in its connected component

Ans:

Ans:

Properties of Graphs: Sum of Degrees

The sum of the vertex degrees is equal to

- (A) The total number of vertices, |V|
- (B) The total number of edges, |E|

(C) What?

Consider:

Answer above:

Degree of X? Degree of Y? Degree of Z? Sum of degrees?

Could sum always be ...

(A) 2|*E*|? (B) 2|*V*|?

Let's see...

The Degree-Sum Formula

The sum of the vertex degrees is equal to ??

Back to definitions:

The degree of *u* is the number of edges incident to *u*

Edge $\{u, v\}$ is incident to its endpoints, u and v

 \Rightarrow Call each endpoint an edge-vertex incidence

Let's count edge-vertex incidences in two ways:

How many incidences does each edge contribute?

Total Incidences in entire graph?

What is the degree of *v*? Incidences corresponding to *v*! Total Incidences?

ι

Theorem: In any graph G = (V, E), the sum of vertex degrees is 2|E|, or

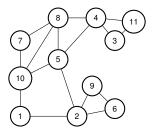
$$\sum_{v\in V} \deg(v) = 2|E|.$$

This is called the "degree-sum formula."

Which of the following are true?

- (A) Number of edge-vertex incidences for an edge *e* is 2.
- (B) Total number of edge-vertex incidences is |V|.
- (C) Total number of edge-vertex incidences is 2|E|.
- (D) Number of edge-vertex incidences for a vertex v is its degree.
- (E) Sum of degrees is 2|E|.
- (F) Total number of edge-vertex incidences is the sum of the degrees.

More Terminology: Paths, Walks, Cycles, and Tour

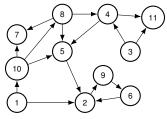


A path is a sequence of connected edges: $\{v_1, v_2\}, \{v_2, v_3\}, \dots \{v_{k-1}, v_k\}$. Path? $\{1, 10\}, \{8, 5\}, \{4, 5\}$? Path? $\{1, 10\}, \{10, 5\}, \{5, 4\}, \{4, 11\}$?

A simple path has no repeated vertices ("path" usually is simple) The length of path is the number of "steps" — number of edges (*not* vertices!) A cycle is a closed path: Path from v_1 to v_{k-1} , + edge { v_{k-1} , v_1 } Walk is sequence of edges with possible repeated vertex or edge. Tour is walk that starts and ends at the same node.

Quick Check: Path is to Walk as Cycle is to ??

Paths in Directed Graphs



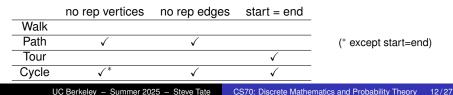
Path: $(v_1, v_2), (v_2, v_3), \dots (v_{k-1}, v_k)$

Same basic idea, but can't go "head-to-tail" on edge

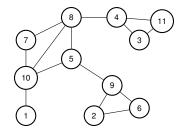
- \Rightarrow Not a path: (1,10), (10,5), (4,5), (4,11)
- \Rightarrow Path: (1,10),(10,8),(8,4),(4,11)

Paths, walks, cycles, tours... are analogous to undirected

A graph with no cycles is acyclic - directed acyclic graph is "dag"



Connectivity: Undirected Graph



u and v are connected if there is a path between u and v

- \Rightarrow Walk or path does it matter?
- A graph is connected if all pairs of vertices are connected

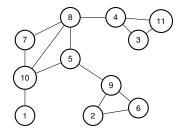
If a vertex x is connected to every other vertex, is graph connected?

Proof idea: For any pair u, v, use path from u to x and then from x to v

- ⇒ Remember: undirected!
- \Rightarrow Gives walk between *u* and *v*

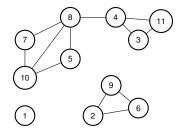
May not be a simple path! But we already said walk or path doesn't matter.

Connectivity and Connected Components



Is the graph above connected?

Connectivity and Connected Components



Is the graph above connected?

How about now?

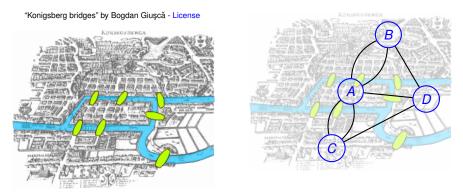
A connected component is a maximal set of connected vertices.

 \Rightarrow Connected Components? {1}, {10,7,5,8,4,3,11}, {2,9,6}

Quick Check: Is {10,7,5} a connected component?

Seven Bridges of Königsberg (1736)

Can you make a tour visiting each bridge exactly once?



Idea: Model with a graph – each region a node (recall map coloring!) Add an edge for each bridge connection Need a multi-graph!

Now: Is there a tour in the multi-graph that visits each edge exactly once? \Rightarrow Note importance of abstraction to "get at the heart of the matter"

Eulerian Tour

An Eulerian Tour is a tour that covers the graph using each edge exactly once.

Theorem: Any undirected multi-graph has an Eulerian tour if and only if it is connected and all vertices have even degree.

Proof of only if: Eulerian \implies connected and all vertices have even degree Given an Eulerian Tour: it is connected, so the graph is connected. Non-start/stop vertices: Tour enters and leaves on each visit.

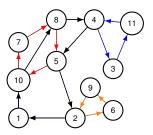
Start/stop vertex: Initially leaves, then enters at end.

For every vertex: Uses two incident edges per visit. Tour uses every edge exactly once \implies every vertex has even degree.

When you enter, you can leave. Not The Hotel California (Timestamp: 4:10)

Proof of if: Even degrees + connected \implies Eulerian tour

We will give an algorithm - with illustration!



- 1. Take a walk starting from v (1) on "unused" edges ... until you get back to v
- 2. Remove tour, C (halt if no edges left)
- 3. Let G_1, \ldots, G_k be connected components Each is touched by *C* Why? *G* was connected Let v_i be (first) node in G_i touched by *C* Example: $v_1 = 1$, $v_2 = 10$, $v_3 = 4$, $v_4 = 2$.
- 4. Recurse on G_1, \ldots, G_k starting from v_i
- 5. Splice together

1,10,7,8,5,10,8,4,3,11,4 5,2,6,9,2 and to 1!

Recursive/Inductive Algorithm – Important Facts

1. Take a walk from arbitrary node v, until you get back to v

Claim: We do get back to v!

Proof: Even degree. If we enter, we can leave except (possibly) for *v*.

2. Remove tour, C, from G

Resulting graph may be disconnected (removed edges)

Let components be G_1, \ldots, G_k , and let v_i be first vertex of C that is in G_i

Always possible? Does tour C touch every G_i ?

 G_1 (component with $v \in G_1$): $v_1 = v$

 G_i with $v \notin G_i$: No path v to G_i after C removed, so edge in C connected it

Claim: Each vertex in each G_i has even degree and is connected.

Proof: Tour *C* has even incidences to any vertex v (even - even = even).

3. Find Eulerian tour T_i of G_i from at v_i . Strong induction (G_i is smaller)

4. Splice T_i into C where v_i first appears in C.

Visits every edge exactly once:

Visits each edge in *C* exactly once.

Remaining edges: each in a G_i , visited exactly once (by induction).

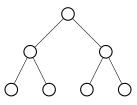
A graph is Eulerian if it has an Eulerian tour.

Question: One of the following statements is false. Which one?

- (A) Removing a tour from an Eulerian graph leaves a graph with all even-degree vertices.
- (B) After removing a set of edges E' in a connected graph, every connected component is incident to an edge in E'.
- (C) Removing a tour leaves a connected graph.
- (D) If one walks on new edges in an Eulerian graph, starting at v, one gets back to v.

Answer:

A common picture of a tree (in computer science):



This is a binary tree, which has certain properties:

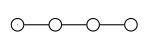
- It is rooted (has a root node)
- Every edge represents a parent/child relationship
 - Every parent has at most 2 children
 - A child is a "left" or "right" child

None of these properties are necessary for a tree!

Trees In General

Definitions: A tree is...

- ... a connected graph without a cycle.
- ... a connected graph with |V| 1 edges.
- ... a connected graph where any edge removal disconnects it.
- ... a connected graph where any edge addition creates a cycle.



No cycle and connected? Yes.

|V| - 1 edges and connected? Yes.

Removing any edge disconnects it? *Harder to check, but yes.* Adding any edge creates cycle. *Harder to check, but yes.*

To tree or not to tree, that is the question:

Theorem:

"G connected with |V| - 1 edges" \iff "G is connected and has no cycles."

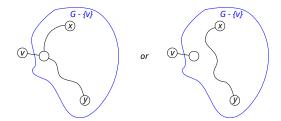
Lemma: If *v* is degree 1 in connected graph *G*, $G - \{v\}$ is connected. **Proof:**

For $x, y \in G - \{v\}$:

Since G is connected, there is path between x and y in G Path cannot use v (degree 1) or it would repeat a vertex

 \implies every pair in $G - \{v\}$ is connected in $G - \{v\}$

 \implies $G - \{v\}$ is connected.



Proof of "Only If"

Theorem:

"G connected with |V| - 1 edges" \implies "G is connected and has no cycles."

Proof: By induction on |V|.

Base Case (|V| = 1): There are |V| - 1 = 0 edges, so no cycles.

Induction Hypothesis: Any G with |V| = k and |E| = k - 1 is conn w/ no cycles

Induction Step: Prove that in G with |V| = k + 1 and |E| = k, conn w/ no cycles

Claim: G has a degree 1 node.**Proof:** First, connected \implies every vertex degree ≥ 1 .Sum of degrees is 2|E| = 2(|V|-1) = 2|V|-2Average degree (2|V|-2)/|V| = 2 - 2/|V|, so must be a degree 1 vertex.Cuz not everyone is bigger than average!

By degree 1 removal lemma, $G - \{v\}$ is connected.

 $G - \{v\}$ has k vertices and k - 1 edges so by induction hypothesis \implies no cycle in $G - \{v\}$.

Add v back to get G: no cycle since degree 1 cannot participate in cycle.

Proof of "If"

Theorem:

"G is connected and has no cycles" \implies "G connected with |V| - 1 edges" **Proof:** By induction on |V|.

Base Case (|V| = 1): Cannot have any edges, and |V| - 1 = 0 edges.

Induction Hypothesis: Any connected G with |V| = k no cycles has |E| = k - 1

Induction Step: Any connected G with |V| = k + 1 no cycles has |E| = k

Pick an arbitrary vertex $v \in V$ and walk using untraversed edges. Finitely many edges, so must stop ("get stuck") at some vertex w.

Claim: w has degree 1.

Proof: Can't visit any vertex more than once since no cycle. Entered *w*. Didn't leave. Only one incident edge.

Remove w and single edge connecting it: can't create cycle. Removal does not disconnect graph (by degree 1 lemma).

So $G - \{w\}$ is conn w/ no cycles and k vertices \implies has k - 1 edges (by I.H.) G has one more edge, or k edges. Let G be a connected graph with |V| - 1 edges.

Question: Which of the following are true?

- (A) Removing a degree 1 vertex can disconnect the graph.
- (B) One can use induction on smaller objects.
- (C) The average degree is 2 2/|V|.
- (D) There is a Hotel California: a degree 1 vertex.
- (E) Everyone can be smarter than average.

Answer:

Graphs:

Definitions, basic properties (degree, path, cycle, tour, ...) Degree-sum formula (sum of degrees is 2|E|) Connected: Path between every pair of nodes Connected Component: Maximal set of connected vertices

Euler tour and condition for existence (even degree vertices) Necessary: Existence of tour ⇒ connected, even degree Sufficient: Recursive algorithm for finding an Eulerian tour

Trees:

Definitions - four of them - all equivalent

Equivalence of definitions

 \Rightarrow Two proved - others "left as an exercise for the reader"