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Lecture 6

Planar Graphs
Euler’s Formula
Planar Six Color Theorem
Planar Five Color Theorem!

Some other important types of graphs:
Complete Graphs
Hypercubes
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Planar Graphs

A planar graph can be drawn in the plane without edge crossings

A planar embedding is a planar drawing of a graph with no edge crossings

Planar? Yes!

Planar? Yes! Different drawing Only straight edges

Wait, what? I see edges crossing!

Don’t confuse the graph with a drawing
One graph can have many drawings!
Question is whether one of the drawings is a planar embedding
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Complete Graphs and Planarity

The complete graph with n vertices has n vertices with all connections

Notation: Kn is the complete graph with n vertices (“K” is for Kuratowski)

K4 K5

Last slide: K4 is planar

Is K5 planar? No! Why? Later...
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Bipartite Graphs

A bipartite graph G = (V ,E) is one where vertices can be partitioned into two
sets A and B such that edges are only between these two sets: E ⊆ A×B.

Consider:

K2,3 Also K2,3
K3,3

In fact has all possible edges in A×B: complete bipartite graph
⇒ Complete bipartite graph with |A|= n and |B|= m is denoted Kn,m
⇒ So the graph above is K2,3

Question: Is K2,3 planar? Yes! To see it, consider a different drawing...

Question: Is K3,3 planar? No! Why? Later...

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 5 / 30



Euler’s Formula

F1

F2

Faces: connected regions of a planar embedding – including “outside” region!

How many faces for
K3 (triangle)? 2
K4 (complete on four vertices)? 4
K2,3 (complete two/three bipartite)? 3

Variables: v is number of vertices, e is number of edges, f is number of faces

Euler’s Formula: Connected planar graph has v + f = e+2 (any embedding!)

K3 (v = 3, f = 2,e = 3): 3+2 = 3+2 Good!
K4: 4+4 = 6+2! Good!
K2,3: 5+3 = 6+2! Good!

3 examples! Proven? Nope!!!!
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Euler’s Formula

Theorem: If G = (V ,E) is a connected planar graph, then v + f = e+2.

Proof: We proceed by induction on e.
Base case (e = 0): Conn? v = 1 No edges? f = 1 so: v + f = 2 and e+2 = 2
Induction Step: Prove when e = k +1, v + f = k +3
Case 1 (no cycles): A tree! e = v −1 =⇒ v = k +2, f = 1, v + f = k +3. ✓
Case 2 (cycles): Find a cycle – remove a bounding edge:

f1 Outer face.

...

Without edge: k edges, f −1 faces, v vertices
Still connected, so I.H. says v +(f −1) = k +2 =⇒ v + f = k +3
Induction step done!

Core idea: Removing a cycle edge (RHS) reduces faces by one (LHS)

For a tree: Removing an edge disconnects (recall equivalent definitions!)
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Concept Check: Euler’s Formula and Proof
Euler’s formula: v + f = e+2

Proof idea: Remove an edge =⇒ decrease faces by one so sides stay equal

Question: Does removing an edge from a planar embedding always
decrease the number of faces?

Answer: No!

Consider removing red edge from:

Question: Does this violate Euler’s formula?

Answer: No! – Disconnected graph, so Euler’s formula doesn’t apply.

Proof always removed edge from a cycle which keeps graph connected!

Removing edge decreases faces or increases connected components
⇒ Challenge to consider: Can you incorporate that into the formula?
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Too Many Edges?
Difficult to embed when “too many” edges: What is “too many”?

For planar graphs with |E | ≥ 2, define face “sides”:

Sides: walk around
face boundary

Smallest interior
3 sides

Smallest exterior
4 sides

First graph: 6 sides
Smallest interior face: 3 sides
Smallest exterior face: 4 sides

Count sides by faces: at least 3 sides each, so total is ≥ 3f

Count sides by edges: each edge has two sides, so total is 2e =⇒ 2e ≥ 3f

Euler’s formula: f = e+2−v

So: 2e ≥ 3(e+2−v) =⇒ 2e ≥ 3e+6−3v =⇒ e ≤ 3v −6

Very important! No planar graph can have more than 3v −6 edges!
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Non-planarity of K5 and K3,3

How many vertices in K5? 5
⇒ So 3v −6 = 3 ·5−6 = 15−6= 9

How many edges in K5? 10

Is e ≤ 3v −6? No! So K5 is not planar.

How many vertices in K3,3? 6
⇒ So 3v −6 = 3 ·6−6 = 15−6= 12

How many edges in K3,3? 9

Is e ≤ 3v −6? Yes... we need to work a little harder...

Important: In a bipartite graph, cycles must have an even number of edges

So for bipartite graphs, number of sides is ≥ 4f (not just 3f )

What happens if we modify previous bound for a bipartite-specific bound?

You work it out! Conclusion is too many edges: K3,3 is not planar
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More Coolness with K5, K3,3, and Planarity

We saw K5 and K3,3 are not planar.
⇒ No graph which contains K5 or K3,3 can be planar.
⇒ “contains” means more than just exact appearance of graphs

So: “Graph contains K5 or K3,3” =⇒ “Graph is not planar”

Amazingly, the converse is true:

“Graph does not contain K5 or K3,3” =⇒ “Graph is planar”
⇒ Proof is beyond the scope of this class
⇒ So K5 and K3,3, and expansions of them, are the only non-planar graphs
⇒ Leads to an efficient algorithm for testing planarity!

Proved by Kuratowski – that’s why his name is immortalized on K5 and K3,3!
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Graph Coloring

Given G = (V ,E), a coloring of G assigns colors to vertices V where
endpoints of each edge have different colors.

First one (K3): 3 colors is necessary and sufficient

Second one (K4): 4 colors are necessary and sufficient

Third one: 3 colors are necessary and sufficient
Determined by number of vertices? No!
Determined by maximum vertex degree? No!

Something more interesting to explore here...
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Planar Graphs and Maps

Planar graph coloring ≡ map coloring

Vertices represent regions, edge means “shares a border”

Four color theorem is about planar graphs!
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Six Color Theorem
An easy warm-up....

Theorem: Every planar graph can be colored with at most six colors.

Proof Sketch: We prove this by induction on v .

Base Case (v = 1): Only one color needed!

Induction hypothesis: Any graph with v = k can be colored with 6 colors.

Inductive step: We prove a graph with v = k +1 can be colored with 6 colors.

Recall (from Euler’s formula): e ≤ 3v −6 for any planar graph where v > 2.

Sum of vertex degrees is 2e =⇒ average degree = 2e
v ≤ 2(3v−6)

v ≤ 6− 12
v .

So there exists a vertex with degree < 6: remove it!

After removal: k vertices, planar =⇒ I.H. says can color with 6 colors.

So color and add v back in. Has ≤ 5 neighbors, so a “spare color” for v .

Graph colored with 6 colors – completes inductive step – completes proof.
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Five Color Theorem: Preliminary Observation

Pick two colors and look at just vertices with those colors – try blue and green

Ignoring other vertices can disconnect graph – look at connected components

In any connected component (with two colors), can flip colors

Even with switched colors, still a valid coloring for full graph
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Five Color Theorem

Theorem: Every planar graph can be colored with five colors.

Proof: As before, there’s a degree 5 vertex – consider neighbors.

· · ·

··
··
··

Uses < 5 colors? Recurse, use 5th color here... Done!
Look at blue-green components – neighbors connected?

No? ⇒ Swap colors in green component.
Now green neighbor is blue – only 4 colors – Done!

Look at red-orange components– neighbors connected?
No? ⇒ Swap colors in orange component.
Now orange neighbor is red – only 4 colors – Done!

Now: blue-green connected and red-orange connected
Planar, so paths must cross at a vertex
Color of intersection vertex?

On blue-green path, so blue or green
On red-orange path, so red or orange
Impossible!

All possible cases led to 5-coloring. Done!
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Five Color Theorem – Flow

Steps/ideas in 5-color theorem:

(A) There is a degree 5 vertex cuz Euler – remove, recursively color

(B) Option 1: Only 4 colors used for neighbors – done

(C) Option 2: Subgraph of 1st and 3rd colors disconnects 1st and 3rd
neighbors – flip one – now only 4 colors on neighbors

(D) Option 3: Subgraph of 2nd and 4th colors disconnects 2nd and 4th
neighbors – flip one – now only 4 colors on neighbors

(E) With 5 colors on neighbors, options 2 and 3 can’t both fail cuz planarity

(F) In all possible options, end with 4 colors on neighbors, so can complete
coloring

(G) Done!
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Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!
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Number of Edges?

Question: How many edges in Kn?

Vertex 1 connected to vertices 2, . . . ,n (n−1 vertices)
Vertex 2 connected to vertices 3, . . . ,n (n−2 vertices)

Vertex 3 connected to vertices 4, . . . ,n (n−3 vertices)
Vertex 4 connected to vertices 5, . . . ,n (n−4 vertices)

...

Total number of edges:
n−1

∑
i=1

i =
n(n−1)

2
(remember 7 year old Gauss?)
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Hypercubes
Complete graphs: hard to disconnect, but need lots of edges

|V |(|V |−1)
2 edges

Trees: fragile (removing any edge disconnects), but very few edges
|V |−1 edges

Hypercubes: Really connected, with |V | log |V |
2 edges!

Vertices map to binary strings

G = (V ,E)
V = {0,1}n (len n binary strings – n is the “dimension” of the hypercube)
E = {{x ,y} | x and y differ in one bit position}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices: number of n-bit strings!
2n vertices each of degree n =⇒ sum of degrees is n2n

=⇒ number of edges is n2n

2 = n2n−1
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Recursive Definition

A 0-dimensional hypercube is a node labeled with the empty string of bits.

An n-dimensional hypercube consists of:

An (n−1) dimensional hypercube called the 0-subcube (add “0” to the
front of each label)

An (n−1) dimensional hypercube called the 1-subcube (add “1” to the
front of each label)

Edges added between corresponding nodes in the 0-subcube and the
1-subcube

000
010

001 011

100
110

101 111
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Cuts in Graphs

A cut in a graph partitions it into two pieces.
⇒ For S ⊆ V , have cut (S,V −S)
⇒ In picture: S is red, V −S is blue

Cut edges have one endpoint in S and one in V −S
⇒ Can visualize by cutting apart sides (OK viz for small graphs...)

The size of a cut is the number of cut edges.

Question: What is the size of the cut above?4

Cut size is a measure of how connected a graph is.
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Cuts in Hypercubes

Trees can have large vertex sets with size 1 cuts
⇒ Easy to disconnect!

Complete graphs have very large cuts: |S| · (|V |− |S|)
⇒ Very hard to disconnect!

What about hypercubes?
⇒ Far fewer edges than a complete graph
⇒ Still good connectivity (robustness), as we’ll prove next

Theorem: For any cut (S,V −S) in a hypercube, with |S| ≤ |V |/2, the cut
size is ≥ |S|.

Restatement: For any cut in the hypercube, the number of cut edges is at
least the size of the smaller side.

For example: Any cut that splits the graph in half has at least |V |/2 edges.
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Proof of Hypercube Cut Size

Theorem: For any cut (S,V −S) in a hypercube, with |S| ≤ |V |/2, the cut
size is ≥ |S|.

Proof: By induction on n (the dimension of the hypercube)

Base Case (n = 1): V = {0,1}, so |V |= 2 and |V |/2 = 1. All S with |S| ≤ 1:
If |S|= 0: no edges crossing the cut, which is ≥ |S| ✓
If |S|= 1: one edge crosses the cut, which is ≥ |S| ✓
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Induction Step Idea

Recall: An n-dimensional hypercube is made up of two (n−1)-dimensional
hypercubes (a 0-subcube and 1-subcube), joined together.

So lower bound edges cut in hypercube by adding:

1 Lower bound edges of cut inside the 0-subcube

2 Lower bound edges of cut inside the 1-subcube

3 Lower bound edges of cut between the 0-subcube and 1-subcube.

Sometimes (1) and (2) are enough Some cases need all 3
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Induction Step: First Part

Induction Hypothesis: For k -dimensional hypercube, any cut (S,V −S) with
|S| ≤ 1

22k , the cut size is ≥ |S|.

Induction Step: For (k +1)-dimensional hypercube, any cut (S,V −S) with
|S| ≤ 1

22k+1, the cut size is ≥ |S|.

Some notation:
0-subcube H0 = (V0,E0); 1-cube H1 = (V1,E1); connecting edges Ex
Full (k +1)-dimensional hypercube: H = (V0 ∪V1,E0 ∪E1 ∪Ex )
S0 = S∩V0 and S1 = S∩V1

Case 1: |S0| ≤ 1
22k and |S1| ≤ 1

22k

Both S0 and S1 are “small sides” in their subcube. By induction hypothesis:
Edges cut in H0 are ≥ |S0|
Edges cut in H1 are ≥ |S1|

Total cut edges ≥ |S0|+ |S1|= |S| (case 1 complete...)
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Induction Step: Case 2

Case 2: |S0|> 1
22k

S0

S1

|V0|= 2k so |V0 −S0| ≤ 1
22k

Ind hypothesis =⇒ edges cut in H0 is ≥ |V0|− |S0|

|S|= |S0|+ |S1| and |S| ≤ 1
22k+1, so |S1| ≤ 1

22k

(i.e., S0 is big, so S1 must be small)
Ind hypothesis =⇒ edges cut in H1 is ≥ |S1|

Edges in Ex connect corresponding nodes:
At most |S1| vertices in S0 linked to S1 in S
Remaining |S0|− |S1| in S0 must cross the cut
=⇒ edges in cut from EX is ≥ |S0|− |S1|

Total edges cut:
≥ |S1|+(|V0|− |S0|)+(|S0|− |S1|) = |V0|= 2k

|S| ≤ 1
22k+1 = 2k , so edges cut is ≥ |S|

Case 3: |S1|> 1
22k (same as case 2)
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Hypercubes and Decision Problems

A decision problem is a function with a yes/no answer

Examples

Is the input number even?

Is the input number prime?

Does the input graph have an Eulerian tour?

Decision problems are central to computer science!

View n-bit inputs as a hypercube

Define cut: S = inputs with a “no” answer (or “yes”)

Edges in cut: inputs where flipping one bit changes answer “no-to-yes”

The cut is the “frontier” where no’s change to yes’s
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Hypercubes and Communication Networks

000
010

001 011

100
110

101 111
Vertices are processors
Edges are communication links

2n = N communicating nodes

Communicate a to b:
⇒ Which bits flip to turn a into b?
⇒ Change bits one at a time: each gives a communication link to use
⇒ At most n bits change – so at most n = log2 N “hops”

Cool things:

Short distance (logarithmic) between any two processors

Easy routing algorithm (which bits need to flip?)

Not too many communication links needed (they’re expensive!)

Robust network (highly connected – hard to disconnect)
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Summary

Planar graphs and planar embeddings
Euler’s formula: v + f = e+2.

Proof: removing an edge from a cycle removes a face (and keeps connected)
Euler’s formula consequence: e ≤ 3v −6

Use to show that K5 is not planar
Modify slightly to show that K3,3 is not planar

Coloring Planar Graphs
Can color with 6 colors! Easy proof – just needs existence of deg ≤ 5 vertex
Can color with 5 colors! Argue about intersection of paths in the plane
Can color with 4 colors! Proof.. well, it’s possible

Graph connectivity
Trees: few edges, but fragile (easily disconnected)
Complete: very robust, but many, many edges
Hypercube: very connected with modest edges

Beautiful structure – bits, bits, bits!
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