Modular Arithmetic

CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 7

Ref: Note 6

- Modular Arithmetic Clock math General mathematical definition
- Inverses for Modular Arithmetic Relationship to Greatest Common Divisor (GCD) Necessary and sufficient conditions
- Computing GCDs The slow way Euclid's GCD Algorithm

If it is 1:00 now. What time is it in 2 hours? 3:00 What time is it in 5 hours? 6:00 What time is it in 15 hours? 16:00 ...actually 4:00

16 is the "same as 4" with respect to a 12 hour clock system "Wraps around" back to 1 after 12 – subtract 12 to get equivalent time

What time is it in 100 hours? 101:00! ...or 5:00 101 is eight 12-hour spans plus 5 hours: $101 = 8 \times 12 + 5$ 101 is the "same as 5" with respect to a 12 hour clock system

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$ Almost remainder after dividing by 12... except for 12 instead of 0.

Day of the Week

- Today is Wednesday, July 2, 2025 What day is it a year from now? ...on July 2, 2026? Encode days with numbers: 0 for Sunday, 1 for Monday, ..., 6 for Saturday
- Today: Day 3 (Wednesday) What day (number) in 3 days? Day 6 (Saturday) What day (number) in 4 days? Day 7? ..Day 0 (Sunday) \Rightarrow Days are equivalent up to addition/subtraction of a multiple of 7 What day (number) in 82 days? Day 85. $85 = 12 \times 7 + 1$..Day 1 (Monday)

What day is it a year from now? Number days? 365 (leap year some years... not this time though) Day 3+365=368Divide by 7: quotient 52, remainder 4 $368=52 \times 7+4$ (Thursday)

Dividing by 7, remainder is always in range 0,...,6 Making it a valid encoding of a day of the week **Definition:** *x* is congruent to *y* modulo *m*, written " $x \equiv y \pmod{m}$," if and only if (x - y) is divisible by *m*.

Equivalent: x and y have the same remainder when divided by m. Or add multiple of m: x = y + km for some $k \in \mathbb{Z}$.

Defines "mod *m* equivalence classes" (or "residue classes") For "mod 7": {..., -7,0,7,14,...}, {..., -6,1,8,15,...}, ... In each class: exactly one value in range 0,..., m-1Reduce *x* modulo *m*: The value in 0,..., m-1 in *x*'s equivalence class Example: Reduce 368 mod 7 gives 4 (from previous slide) Can write "368 mod 7 = 4"

Useful Fact: Working "mod m", addition, subtraction, multiplication can be done with any equivalent x and y.

So $(7 \times 15 - 6) \equiv (14 \times 8 + 15) \pmod{7}$ Simplifying: $99 \equiv 127 \pmod{7}$ and (127 - 99) = 28, a multiple of 7

For "what day in a year?" Can add 365 or add (365 mod 7) = 1 \Rightarrow Add 1 or add 365 — same result mod 7

Formalizing previous "useful fact"

Theorem: If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then $a + b \equiv c + d \pmod{m}$.

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some $k \in \mathbb{Z}$. Similarly, if $b \equiv d \pmod{m}$, then b = d + jm for some $j \in \mathbb{Z}$. Adding these two together we get a + b = c + d + (k + j)m, so $(a+b) \equiv (c+d) \pmod{m}$.

Similarly:

Theorem: If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then $a - b \equiv c - d \pmod{m}$.

Theorem: If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then $a \cdot b \equiv c \cdot d \pmod{m}$.

Consequence: Can calculate with smaller numbers, using $\{0, \ldots, m-1\}$.

Silly example: What is $7771 \times 7771 \mod 7$?

- \Rightarrow Calculating it out: 7771 \times 7771 = 60,388,441, remainder in div by 7 is 1
- \Rightarrow With "this one simple trick": 7771 mod 7 = 1, so 7771 \times 7771 \equiv 1 \times 1 (mod 7)

Notation

 $x \mod m$...or... $\mod (x, m)$...or in programming... $x \ \% \ m$ All mean reduce x by m: remainder of x divided by m

Common notation in programming:

Do not use "%" in mathematical writing! Use mod

 \Rightarrow Warning: In programs, "" may not agree with math for negative values!

Subtle distinction between similar notations:

x mod m is an operation giving a value in $0, \ldots, m-1$

 $a \equiv b \pmod{m}$ is a *relation* – doesn't give a value

If $r = x \mod m$ (operator) then $r \equiv x \pmod{m}$

BUT if $r \equiv x \pmod{m}$ it does not mean $r = x \mod m$ r may not be in $0, \ldots, m-1$

Multiplicative Inverses

The multiplicative inverse of a value x is a value y such that $x \cdot y = 1$. \Rightarrow More generally, product gives *multiplicative identity* – "1" is good enough for now But wait! Multiplication over what set? How is multiplication defined? *Multiplication over* \mathbb{Q} : The multiplicative inverse of $\frac{a}{b}$ is $\frac{b}{a}$. *Multiplication over* \mathbb{R} *example:* The multiplicative inverse of 2 is 0.5. *Multiplication over* \mathbb{Z} *example:* The multiplicative inverse of 2 is ... ???? *Multiplication over* \mathbb{Z} , \mathbb{Q} , or \mathbb{R} : Multiplicative inverse of 0 is... ????

Bottom line: Multiplicative inverses don't always exist

 \Rightarrow Depends on the set you're working over, value you're asking about, ...

Division of *a* by *b* is just *a* times the multiplicative inverse of *b*.

Example over \mathbb{Q} – normally would say "divide both sides by 2," but really:

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}$$

Multiplicative Inverses in Modular Arithmetic

Bottom line: Multiplicative inverses don't always exist

 \Rightarrow Depends on the set you're working over, value you're asking about, ...

What if we're multiplying mod m?

Multiplicative inverse of x (mod m) is a value y such that $x \cdot y \equiv 1 \pmod{m}$

Do multiplicative inverses exist in modular arithmetic?

Consider 4 (mod 7): we have $2 \cdot 4 \equiv 1 \pmod{7}$ \Rightarrow So 2 is multiplicative inverse of 4 (mod 7) \Rightarrow Use to solve $4x \equiv 5 \pmod{7}$ $2 \cdot 4x \equiv 2 \cdot 5 \pmod{7}$ $x \equiv 3 \pmod{7}$ [Check it: What's $4 \cdot 3 \mod{7}$?] Consider 4 (mod 6): Multiplicative inverse? \Rightarrow Need x such that $4 \cdot x \equiv 1 \pmod{6}$... or 4x - 1 = 6k for some $k \in \mathbb{Z}$

... but LHS is odd, RHS is even... impossible!

In modular arithmetic, some values have mult inverses; some don't; ... why?

Question: Which of the following are true?

- (A) Multiplicative inverse of 2 (mod 5) is 3 (mod 5). $2 \cdot 3 = 6$ and $6 \equiv 1 \pmod{5} \checkmark$
- (B) The multiplicative inverse of $(n-1) \pmod{n}$ is $(n-1) \pmod{n}$. $(n-1)(n-1) = n^2 - 2n + 1 = n(n-2) + 1 \longrightarrow a$ multiple of *n* plus 1 \checkmark
- (C) Multiplicative inverse of 2 (mod 5) is 0.5.
- (D) Multiplicative inverse of 4 (mod 5) is $-1 \pmod{5}$. $4 \cdot -1 = -4$ and $-4 \equiv 1 \pmod{5}$ [note that -4 - 1 = -5, a multiple of 5] \checkmark
- (E) Multiplicative inverse of 4 (mod 5) is 4 (mod 5). $4 \cdot 4 = 16$ and $16 \equiv 1 \pmod{5}$ [note: this is just (B) with numbers] \checkmark

Answer: All but (C). 0.5 has no meaning in arithmetic modulo 5.

Theorem: If gcd(x, m) = 1, then x has a unique multiplicative inverse mod m.

Proof: Consider all multiples of x (mod m): 0x, 1x, ..., (m-1)x (all mod m)

Claim: If gcd(x, m) = 1 then all these products are distinct.

Proof of Claim: Assume for the sake of contradiction that there is a pair a, b from $\{0, 1, ..., m-1\}$ with $a \neq b$ and $ax \equiv bx \pmod{m}$.

Then ax - bx = (a - b)x = km for some $k \in \mathbb{Z}$.

x and m share no prime factors, so a - b must contain all factors of m, meaning a - b is a multiple of m.

For values in $\{0, 1, ..., m-1\}$, can't have $|a-b| \ge m$ and since $a \ne b$ can't have a-b=0. Therefore impossible – contradiction! QED claim

Products are *m* distinct values with *m* possible values, so each value appears exactly once. Therefore exactly one product is 1, which gives the multiplicative inverse of x.

Earlier Examples - Put Into This Proof

Proof looked at products 0x, 1x, ..., (m-1)x (all mod m)

Earlier example: Inverse of 4 (mod 7)? Note: gcd(4,7) = 1Products are 0.4, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4 = 0, 4, 8, 12, 16, 20, 24 Mod 7: 0, 4, 1, 5, 2, 6, 3 \Rightarrow Every value {0,...,6} appears exactly once including 1 for inverse

Second example: Inverse of 4 (mod 6)? *Note:* gcd(4,6) = 2Products are 0 · 4, 1 · 4, 2 · 4, 3 · 4, 4 · 4, 5 · 4 = 0, 4, 8, 12, 16, 20 Mod 6: 0, 4, 2, 0, 4, 2 \Rightarrow Repetitions! (and no 1)

Another observation: 0 is a multiple of a non-zero $(4 \cdot 3 \equiv 0 \pmod{6})$ That's ... interesting

Suggests an interesting possibility: mod p, where p is prime $\Rightarrow All$ non-zero residues are relatively prime so have an inverse

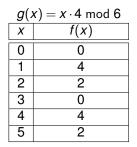
Gettin' Mathy With It

$f(x) = x \cdot 4 \mod 7$		
X	f(x)	
0	0	
1	4	
2	1	
3	5	
4	2	
5	6	
6	3	

f(x) is a bijection

Alternate terminology: one-to-one and onto Implies: f(x) is invertible $f^{-1}(x) = x \cdot 2 \mod 7$ Why? $f^{-1}(f(x)) \equiv (x \cdot 4 \cdot 2) \equiv x \pmod{7}$

Important: For $f(x) = c \cdot x \mod m$, bijection whenever gcd(c, m) = 1



g(x) is *not* a bijection

Multiple values map to same image Can't invert — no unique pre-image

Question: Which is bijection?

- (A) f(x) = x for domain and range being \mathbb{R}
- (B) $f(x) = ax \pmod{m}$ for $x \in \{0, ..., m-1\}$ and gcd(a, m) = 2
- (C) $f(x) = ax \pmod{m}$ for $x \in \{0, ..., m-1\}$ and gcd(a, m) = 1

Answer: (A) and (C)

- (A) is the identify function over $\mathbb R-always \ a \ bijection$
- (B) and (C): Bijection if and only if gcd(a, m) = 1

Theorem: For $x, m \in \mathbb{N}$, if $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo *m*.

Proof: Let $x, m \in \mathbb{N}$ with gcd(x, m) = d and d > 1. Assume for the sake of contradiction that x has a multiplicative inverse, say y with $yx \equiv 1 \pmod{m}$.

Then there exists a $k \in \mathbb{Z}$ such that yx + km = 1. Since *d* is a divisor of *x* and *m*, we can write x = x'd and m = m'd, and so yx'd + km'd = (yx' + km')d = 1. This implies that 1 is a multiple of *d*, which is impossible for d > 1.

Thus we reach a contradiction, so *x* cannot have a multiplicative inverse.

Combining the necessary and sufficient results:

Theorem: For $x, m \in \mathbb{N}$, x has a multiplicative inverse modulo m if and only if gcd(x, m) = 1.

To test if multiplicative inverse exists, compute gcd. How?

Algorithm 1 – count down to find a common divisor – stops at largest:

```
def gcd(x, y):
    d = x
    while d >= 1:
        if (x%d == 0) and (y%d == 0):
            return d
        d = d - 1
```

Does it work? Yes!

Fast? No! gcd (1000000, 999999) takes a million iterations (remember this!)

Divisibility and mod

Lemma 1: If $d \mid x$ and $d \mid y$, then $d \mid (x \mod y)$.

Proof: Let $z = x \mod y$, so by definition x = ky + z for some $k \in \mathbb{Z}$. Since $d \mid x$ there is an $x' \in \mathbb{Z}$ such that x = x'd. Similarly, since $d \mid y$ there is an $y' \in \mathbb{Z}$ such that y = y'd. Then we can write $x = ky + z \implies x'd = ky'd + z \implies (x' - ky')d = z$. Therefore, $d \mid z$ (with $z = x \mod y$).

Lemma 2: If d | y and $d | (x \mod y)$ then d | x.

Proof: "Trust me" (or prove it on your own!).

GCD Mod Theorem: $gcd(x, y) = gcd(y, x \mod y)$

Proof: *x* and *y* have same set of common divisors as *y* and $(x \mod y)$ by Lemma 1 and 2.

Same common divisors \implies largest is the same.

Euclid's Algorithm (\approx 300 B.C.)

```
GCD Mod Theorem: gcd(x,y) = gcd(y, x mod y)
Suggests a recursive algorithm - what's the base case?
By Theorem: gcd(4,4) = gcd(4,0) - what's gcd(4,0)???
4|4 and 4|0 - so gcd(4,0) = 4
In general: gcd(x,0) = x

def euclid(x, y):
    if y == 0:
        return x
    return euclid(y, x % y)
```

Theorem: euclid (x, y) correctly computes gcd(x, y).

Proof: Does it halt? Yes! 2nd argument gets smaller each step, and stays non-negative. \implies It reaches 0.

Is the answer right? Yes! By GCD Mod Theorem, GCD of the two arguments stays the same with every recursive call.

Question: Which of the following are correct?

- (A) gcd(700,568) = gcd(568,132)
- (B) gcd(8,3) = gcd(3,2)
- (C) gcd(8,3) = 1
- (D) gcd(4,0) = 4

Answer: All are correct!

Recall: Algorithm 1 took 1,000,000 steps for gcd (1000000, 999999)

What about euclid?

euclid takes 3 steps!

OK... this example was "cheating"

- ⇒ Best possible case for euclid
- \Rightarrow Worst possible case for Algorithm 1

More realistic example: compute gcd(700, 568):

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(12, 4)
euclid(4, 0)
4
```

Notice: The first argument decreases rapidly. At least a factor of 2 every two recursive calls. Can we prove this?

Proof for Argument Decrease

Recursive call: $gcd(x, y) = gcd(y, x \mod y)$

Slight technicality: Assume $x \ge y$ – no big deal, if it's not it will be after 1 call

Theorem: If we start with $x \ge y$, then after two recursive calls the first argument is halved.

Proof: By cases ...

Case 1: $x \ge 2y$ Here $y \le x/2$ and first argument to rec call is $\le x/2$ Halved in one call!

Case 2: x < 2ySince $x \ge y$, we have $y \le x < 2y$, so $\lfloor \frac{x}{y} \rfloor = 1$ So the remainder: $x \mod y = x - y \cdot \lfloor \frac{x}{y} \rfloor = x - y$ In this case, y > x/2, so x - y < x/2 $x \mod y$ becomes first arg in 2 steps, and $x \mod y < x/2$

Halved in two steps in both cases.

How Fast Is This?

How many times can we half something until we get to 1? For example:

$$128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

In general, starting with *x* (and ignoring non-integer results....):

$$x
ightarrow rac{x}{2}
ightarrow rac{x}{2^2}
ightarrow rac{x}{2^3}
ightarrow rac{x}{2^4}
ightarrow \cdots
ightarrow 2
ightarrow 1$$

Observation: After k steps we have $\frac{x}{\alpha k}$

$$\Rightarrow$$
 Solve $\frac{x}{2^k} = 1 \implies x = 2^k \implies k = \log_2 x$

Algorithm halves in two steps, so takes at most 2log₂ x steps

X	Algorithm 1	euclid
1000	1000	\approx 20
1 million	1 million	\approx 40
1 billion	1 billion	\approx 60

So first example was cheating, and euclid finished in 3 steps, but... It will never take more than 40 steps! Multiplicative inverse of x (mod m) if and only if gcd(x,m) = 1. \Rightarrow euclid can guickly tell if a multiplicative inverse exists!

But we want to compute the multiplicative inverse! How? Turns out:

- A modification of euclid computes multiplicative inverse
- Same running time fast!

Details?

... next time

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N} and c \equiv d \pmod{N}:
ac \equiv bd \pmod{N} and (a+c) \equiv (b+d) \pmod{N}.
```

Division? Multiply by multiplicative inverse $a \pmod{N}$ has multiplicative inverse iff gcd(a, N) = 1

Euclid's Algorithm: Based on fact that $gcd(x, y) = gcd(y, x \mod y)$ Very fast! Algorithm invented around 300 B.C. is still in use today! Cool.