Extended GCD Algorithm, Chinese Remainder

Theorem, Fermat’s Little Theorem

CS70: Discrete Mathematics and Probability Theory

UC Berkeley — Summer 2025

Lecture 8
Ref: Notes 6 and 7

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 1/23

Extending the basic Euclid GCD algorithm
Computing additional useful values along the way
Using these values to find multiplicative inverses
Other uses of Euclid: Fundamental Theorem of Arithmetic

Chinese Remainder Theorem
Mapping from one modulus to two (or several)
Use in speeding up computations with composite moduli

Fermat’s Little Theorem
Powers with a prime modulus
A few tricks enabled by Fermat’s Little Theorem

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 2/23

Euclid’s GCD Algorithm — Recap

def euclid(x, y):
if y ==
return x

return euclid(y, x % vy)

Theorem: euclid(x,y) correctly computes gecd(x,y).
Run time: When x > y, euclid takes at most 2log, x steps
= This is linear in the number of bits of x
(That’s fast!)

Can quickly tell if there is a multiplicative inverse for x mod m

Next Problem: So how do we compute the inverse?

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 3/23

Extended GCD

Euclid’s Extended GCD Theorem: For any x, y € Z, there exist a,b € Z such
that ax + by = d where d = gcd(x, y).

Just about existence — we’ll talk about computing a and b later!
Re-stated: “We can make d out of sum of multiples of x and y.”
Relation to multiplicative inverse of x modulo m?

We have gcd(x, m) = 1 (otherwise no inverse!), so there are a,b € Z with
ax+bm=1 = bm=1-ax = ax=1 (mod m)
So ais the multiplicative inverse of x (mod m)!

Example: For x =12 and m = 35, we have gcd(12,35) = 1, so inverse exists.
Values a=3 and b= —1,since 3-12+(—1)-35=1.
= Multiplicative inverse of 12 (mod 35) is a, or 3.

Check: 3-12=36and 36 =1 (mod 35).

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 4/23

Pulling Multiples of x and y Out of GCD Computation

euclid(35,12)
euclid (12, 11) ;; euclid(l12, 35%12)
euclid (11, 1) ;; euclid(ll, 12%11)
euclid(1,0)
1

How did euclid get 11 from 35and 12? 11 =35 mod 12
Another view of this operation: 35— L%J 12=35—-(2)12=11

How does gcd get 1 from 12 and 11?
12— [BJ111=12-(1)11 =1

Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 127

Get 1 from 12 and 11.
1=12—-(1)11=12—(1)(35-(2)12) = (3)12+(—1)35

Get 11 from 35 and 12 and plugin.... collect multiples of 12 and 35...
Finally: a=8and b= —1.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 5/23

Extended GCD Algorithm

def extgcd(x, vy):
if y ==
return (x, 1, 0)

(d, a, b) = extgcd(y, x % vy)

return (d, b, a - b*x(x // y)) # Note: // is integer division
Claim: Returns (d,a,b): d = gcd(x,y) and d = ax+ by.
Example:

extgcd (35,12)

extgcd (12, 11)
extgcd (11, 1)

extgcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) O
return (1,0,1) ;001 = (0)11 + (1)1
return (1,1,-1) ;; 1= (1)12 + (-1)11
return (1,-1, 3) ;5 1L = (-1)35 +(3)12

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 6/23

Extended GCD Algorithm: Correctness

def extgcd(x, y):
if y ==
return (x, 1, 0)

(d, a, b) = extgcd(y, x % Vy)
return (d, b, a - b*x(x // y)) # Note: // is integer division

Theorem: extgcd (x, y returns (d, a,b), where d = gcd(a, b) and
d=ax+by.

Proof: Computation of d is exactly as before, so d = gcd(a, b). We prove the
remaining property by (strong) induction on y.

Base case (y =0): extgcd (x, 0) returns (x,1,0), we know x = d and
1-x+0-0=xVv

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 7/23

Extended GCD Algorithm: Correctness continued

Induction Hypothesis: Assume that for all X’ > y’ and y’ < y, extgcd(x',y’)
returns (d,a,b) withd=a-x'+b-y'.

Induction Step: We prove that at y, extgcd (%, y) returns (d, A, B) with
d=A-x+B-y.

Makes a recursive call for extgcd(y,x mod y). Since (x mod y) < y the
induction hypothesis states that this returns (d, a, b) with
a-y+b-(xmody)=d.

Given this value from the recursive call, extgcd returns (d, A, B) calculated
asA=band B=a-b- L;j (from the algorithm).
A-x+B-y=b-x+(a—b-[{])y
=b-x+a-y—bljly
—a-y+b-(x=151y)
=a-y+b-(x mody)

This last formula matches the induction hypothesis, so is equal to d. O

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 8/23

Non-Recursive Hand Calculation Method

Example for 7 and 60 — note gcd(7,60) =1
60 (1)

7(0) + 60(1)
7(1) + 60(0)

7

()

Idea: subtract largest multiple of the second one you can keeping RHS smaller

That multiple is |
7(0) + 60(

@ng

(1)

)
)
)

;
- 7(8) +60(0

7(-8) + 60(1
(

Do it again with (2) and (3

7(1) + 60(

60
56 (2 multiple)
4

@)
[multiple is | 7] =1

(2)
(3 multiple)

0)
- 7(-8) +60(1)
7(9) + 60(-1)

And again....
7(-8) + 60(1)
- 7(9) + 60(-1)

WS N

4
3

(4)

3)
(4)

7(-17) + 60(2)

1

Multiplicative inverse of 7 (mod 60) is —17 =43 (mod 60)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory

9/23

Wrap-up of Computing Multiplicative Inverses

Conclusion: Can find multiplicative inverses with n-bit modulus in O(n) time!

Very different from grade school: try 1, try 2, try 3... optimized: 27/2 time.

Inverse of 500,000,357 modulo 1,000,000,000,0007?
< 80 divisions.
versus 1,000,000

Soon we’ll see cryptography that uses very large numbers

Example: Numbers with 1024 bits

Euclid: At most 2048 divisions to find multiplicative inverse

Grade School: 1000
00
0000000000000000000000000000000 divisions

This kind of cryptography is impossible without an algorithm like Euclid’s.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 10/23

Fundamental Theorem of Arithmetic

Euclid’s Extended GCD Theorem is useful for things beyond computation.

Theorem: Every natural number can be written as the product of primes.

Proof: Uses strong induction — existence of product of primes:
Case 1: nis prime. Done.
Case 2: nis not prime, so can be written as n=a- b. By IH,
both a and b can be written as the product of primes. O

Theorem: The prime factorization of n is unique up to reordering.
Proof idea: We use Euclid’s Extended GCD Theorem!

Fundamental Theorem of Arithmetic: Every natural number can be written as
a unique (up to reordering) product of primes.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 11/23

Euclid For Proofs About Shared Factors

Claim: For x,y,z € Z* with ged(x,y) =1 and x| yz then x| z.
Idea (restatement): x doesn’t share factors with y so it must divide z.
Euclid: There exists a,b € Z such that 1 = ax+ by — z=axz-+byz.

Observe: x| axz (obviously) and x | byz (since x| yz), and x divides the sum.
= Xx|axz+ byz, and since axz + byz = z we have x| z.

So to prove Fundamental Theorem of Arithmetic:
Proof by contradiction: Assume two factorizations p; ---px and gy --- q¢
Induction: p; divides both (same number).
Using claim: py divides g1 - q,_1 or q;.
Conclusion: p; = q; for some i.

O

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 12/23

Values Modulo Product of Two Primes

]X\XmodS\XmodS‘

0 0 0 Table shows x from 0 to 14 —so x (mod 15)

1 1 1

g g 2 Any x with x =1 (mod 3) and x =4 (mod 5)?
4 i]

5 2 0 Any x with x =2 (mod 3) and x =3 (mod 5)?
6 0 1

7 1 2

8 2 3 x any a,b: x=a (mod 3) and x = b (mod 5)?
9 0 4 Yes! Check all — or prove a general theorem!
10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 13/23

Chinese Remainder Theorem (2 modulus version)

Theorem: For m, n with gcd(m, n) =1, and any a, b, there is exactly one
x€{0,1,....,mn—1} with x=a (mod m) and x =b (mod n).

Note: Previous table had m =3, n=5, two primes. The requirement isn’t so
strict: m and n only need to be relatively prime. (Example on next slide...)

Proof: First consider existence of a solution.
ged(n,m) =1 so compute s =n~" (mod m), and consider integer u=s-n
umod m=1 umodn=20
Similarly, compute t = m~" (mod n), and consider v =t-m
v mod n=1 v mod m=0
Now compute x = (a-u+b-v) mod mn
Considermod m: x=a-u+b-v=a-1+b-0=a (mod m)
Considermod n: x=a-u+b-v=a-0+b-1=b (mod n)

Unique: For any x € {0,1,...,mn—1} compute a= x mod mand b= x mod n
Can map x — (a,b) and (a,b) — x
= Mapping is a bijection (one-to-one) so solution is unique. O

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 14/23

Using the Chinese Remainder Theorem

Proof that solution x exists was constructive, so can use it as to compute

Ex: Let’s find x (mod 1155) with x =17 (mod 33) and x = 14 (mod 35)
Son=33, m=35 nm=1155,a=17,and b= 14
= Note! nand m are not prime — but are relatively prime!
We typically use prime moduli, but this is not required!

Compute s=n"" (mod m)=33"" (mod 35) Thisis 17
Computed using extgcd: Check 33-17 =561 =16-35+1
u=s-n=17-35=2595

Compute t=m~" (mod n) =351 (mod 33) This is 17 (coincidence!)
v=t-m=17-33 =561

Finally, compute a-u+b-v=17-595+14.561 = 17696
Then reduce: x = 17969 mod 1155 = 644

Did it really work?
644 mod 33 =17 (since 644 =19-33+17)
644 mod 35 = 14 (since 644 =18-35+14)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 15/23

Chinese Remainder Theorem: Extension and Uses

Extension
No need to restrict to just two moduli
Use my, my, ..., my that have ged(m;, m;) =1 foralli#j (pairwise co-prime)
Letm=my-mo---my
Given values xq,Xo,
... a unique solution x (mod m) such that x; = x mod my, Xo = X mod mo, ...

A Practical Use
For input x, we want to do some long computation f(x) mod mn (e.g, powering)
Instead:
1. Compute x; = x mod m
2. Compute x, = X mod n
3. Compute ym = f(Xm) mod m
4. Compute yp = f(xn) mod n
5. Combine results ym, and y, using CRT to find result y (mod mn)
Steps 3 and 4 work on smaller numbers, so can be faster overall

If steps 3 and 4 an be done in parallel can be much faster!

Hardware accelerators for cryptography use this!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 16/23

Playing with Numbers... Just Because...

Recall proof that gcd(x,m) =1 = x has a mult inverse mod m
= Looked at products 0x,1x,...,(m—1)x (all mod m)

Showed that products contain exactly one copy of every value 0,1,...,m—1

Remember Steve’s advice? Be exploratory. Be playful.
What else can we do with these products?
What if we multiplied all the non-zero values together? Why? Why not?

Products just rearrange all values, so equal to product of all values...

1X-2X - (m—1)x=1-2----. (m—1) (mod m)
(1.2..... (m—1))x"1=1.2..... (m—1) (mod m)
Wouldn't it be cool if we could cancel out1-2---.-. (m—1) from both sides?

To do that, need a multiplicative inverse or gcd(1-2----- (m—=1),m) =1
True if and only if mis prime — this seems important...

Congratulations! By being playful, you are as good a mathematician as Fermat!
If only it were really that easy....

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 17/23

Fermat’s Little Theorem

Fermat’s Little” Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).

Proof: Consider S={a-1,...,a-(p—1)}. All different modulo p since a has
an inverse modulo p (so multiplying by a is a bijection). Therefore

(a-1)-(a-2)-(a (p—1)=1-2(p—1) (mod p),
since multiplication is commutative.
aPVA...(p=1)=(1---(p—1)) (mod p).

Since p is prime, its smallest factor > 1is p, and so 1---(p— 1) is relatively
prime to p and hence has a multiplicative inverse. Multiply each side above
by this multiplicative inverse to get

aP =1 (mod p). O

¥ Not Fermat's Last Theorem. Yes, both “FLT.” Yes, can be confusing.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 18/23

Proof lllustration with Numbers

We'llluse p=5and a=2

First sequence: 1,2,3,4

Second sequence: (2-1), (2-2), (2-3), (2-4) = 2,4,1,3 (mod 5).
Multiply LHS and simplify: (2-1)-(2-2)-(2-3)-(2-4) =2%(1-2-3-4)

Multiply RHS and reorder: 2-4-1.-3=1-2-3-4
Because muiltiplication is commutative

Was the same sequence mod 5,502%-1.2.3-4=1-2-3-4 (mod 5)

Since 5 is prime, no shared factors with any of 1, 2, 3, or 4
= gcd(1-2-3-4,5) =1
= 1.2.3-4 has a mult inverse mod 5, so can cancel out

Therefore, 2* =1 (mod 5)
Really? 2* = 16 and 16 mod 5 =1 — s0 yes, really.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 19/23

Concept Check!

Question: Which of the following was used in Fermat’s theorem proof?

(A) The mapping f(x) = ax mod pis a bijection.
(B) Multiplying a number by 1, gives the number.
(C) When pis prime, gcd(p,(p—1)!) =1

(D)
(E)

E

Multiplying a number by 0 gives 0.
Multiplying elements of sets A and B together is the same if A= B.

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 20/23

Fermat’s Little Theorem Tricks

FLT: For prime p, and a# 0 (mod p), @' =1 (mod p).

Trick #1: Simplifying powering by reducing the exponent.
What is 219" (mod 7)?
What is quotient and remainder dividing exponent (101) by p—1 (6)?
101 =6-16+5, 50 2101 = 261645 = (26Y"°.25 = 25 = 32 (mod 7)
32mod7=4,502"" =4 (mod 7)
A bit easier than using 219" = 2535301200456458802993406410752

Trick #2: Computing multiplicative inverses mod a prime p.
Note that &' = a-a°2 =1 (mod p)
= 50 a2 mod p is the multiplicative inverse of a
Example: Multiplicative inverse of 4 (mod 7)?
45 =1024 and 1024 mod 7 =2

Using Python: “o=7; pow (4,p-2,p)” gives 2.

UC Berkeley — Summer 2025 — Steve Tate

CS70: Discrete Mathematics and Probability Theory 21/23

Fermat’s Little Theorem Almost-Tricks

FLT: For prime p, and a# 0 (mod p), @' =1 (mod p).

Trick #3: Almost.... Can we use FLT to test for primality?

Example: Is 5153642624137 prime?

Could try dividing things into it... slow.
Or:

>>> N=5153642624137
=>> pow(5, n-1, n)
15625

So a™'#1 (mod n): ndoesn't satisfy property all primes must
So... nis not prime

Correct in this case, but will this always work? No - two problems:
1. For all composite n, some choices of a will give 1

Solution: Usually... Less than half of a’s, so pick at random (and repeat!)

2. For some n, formula holds for all a's (Carmichael numbers)
Solution: A bit harder, but can solve....

Result: Miller-Rabin primality testing algorithm

Berkeley connection! Based on Gary Miller's Ph.D. dissertation from Berkeley.
UC Berkeley — Summer 2025 — Steve Tate

CS70: Discrete Mathematics and Probability Theory 22/23

Extended Euclid: Find a,b where ax + by = gcd(x,y)
Idea: compute a, b recursively (euclid), or iteratively
Inverse: ax+ by = ax = ged(x,y) (mod y)

If ged(x,y) =1, we have ax=1 (mod y)
—a=x"" (mod y)

Fundamental Theorem of Arithmetic: Unique prime factorization of any n
Claim: if p|nand n= xy, p|x of p|x.
Proof relies on Extended Euclid GCD Theorem
Fundamental Theorem follows using induction + contradiction. Chinese

Remainder Theorem:
If ged(n,m) =1 then x =a (mod n), x =b (mod m) unique sol.
Proof: Find u=1 (mod n), u=0 (mod m),
and v=0 (mod n), v=1 (mod m).
Then: x = au+bv =a (mod n)

Fermat: For prime p, a°~' =1 (mod p)
Proof Idea: f(x) = a-x (mod p) is bijectionon S={1,...,p—1}.
Multiply domain elts and range elts — cancel and left with just a°~' in range

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 23/23

