
CS 70 Discrete Mathematics and Probability Theory
Fall 2025 Course Notes Note 24
1 Normal Distribution
Another continuous distribution we will consider, and by far the most prevalent in applications, is called the
normal or Gaussian distribution. It has two parameters, µ and σ2, which are the mean and variance of the
distribution, respectively.

Definition 24.1 (Normal Distribution). For any µ ∈ R and σ > 0, a continuous random variable X with
p.d.f.

f (x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

is called a normal random variable with parameters µ and σ2, and we write X ∼ N(µ,σ2). In the special
case µ = 0 and σ = 1, X is said to have the standard normal distribution.

Let’s first check that this is a valid definition of a probability density function. Clearly f (x) ≥ 0 from the
definition. Then we verify that the integral of the probabilities is 1:∫

∞

−∞

f (x) dx =
1√

2πσ2

∫
∞

−∞

e−(x−µ)2/(2σ2) dx = 1. (1)

The fact that this integral evaluates to 1 is a standard exercise in (mutivariable) integral calculus (or feel free
to look it up in any standard text on probability or on the internet).

A plot of the p.d.f. f reveals a classical “bell-shaped" curve, centered at (and symmetric around) x = µ , and
with “width" determined by σ . Figure 1 shows that the normal densities with different values of µ and σ

are very similar to each other. Indeed, the normal distribution has the following nice property with respect
to shifting and rescaling.

Figure 1: The density function for the normal distribution with several different choices for µ and σ2.

Lemma 24.1. If X ∼ N(µ,σ2), then Y = X−µ

σ
∼ N(0,1). Equivalently, if Y ∼ N(0,1), then

X = σY +µ ∼ N(µ,σ2).
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Proof. Given that X ∼ N(µ,σ2), we can calculate the distribution of Y = X−µ

σ
as:

P[a ≤ Y ≤ b] = P[σa+µ ≤ X ≤ σb+µ] =
1√

2πσ2

∫
σb+µ

σa+µ

e−(x−µ)2/(2σ2) dx =
1√
2π

∫ b

a
e−y2/2 dy,

by a simple change of variable x = σy+µ in the integral. Hence Y is indeed standard normal. Note that Y
is obtained from X just by shifting the origin to µ and scaling by σ .

1.1 Mean and Variance of a Normal Random Variable
Let us now calculate the expectation and variance of a normal random variable.

Theorem 24.1. For X ∼ N(µ,σ2),

E[X ] = µ and Var(X) = σ
2.

Proof. First consider the case when X ∼ N(0,1). By definition, its expectation is

E[X ] =
∫

∞

−∞

x f (x) dx =
1√
2π

∫
∞

−∞

xe−x2/2 dx =
1√
2π

(∫ 0

−∞

xe−x2/2 dx+
∫

∞

0
xe−x2/2 dx

)
= 0.

The last step follows from the fact that the function e−x2/2 is symmetrical about x = 0, so the two integrals
are the same except for the sign. For the variance, we have

Var(X) = E
[
X2]−E[X ]2 =

1√
2π

∫
∞

−∞

x2e−x2/2 dx

=
1√
2π

(
− xe−x2/2)∣∣∣∞

−∞

+
1√
2π

∫
∞

−∞

e−x2/2 dx

=
1√
2π

∫
∞

−∞

e−x2/2 dx = 1.

In the first line here we used the fact that E[X ] = 0; in the second line we used integration by parts; and in the
last line we used (1) in the special case µ = 0, σ = 1. So the standard normal distribution has expectation
E[X ] = 0 = µ and variance Var(X) = 1 = σ2.

Now consider the general case when X ∼ N(µ,σ2). By Lemma 24.1, we know that Y = X−µ

σ
is a standard

normal random variable, so E[Y ] = 0 and Var(Y ) = 1, as we have just established above. Therefore, we can
read off the expectation and variance of X from those of Y . For the expectation, using linearity, we have

0 = E[Y ] = E
[

X −µ

σ

]
=

E[X ]−µ

σ
,

and hence E[X ] = µ . For the variance we have

1 = Var(Y ) = Var
(

X −µ

σ

)
=

Var(X)

σ2 ,

and hence Var(X) = σ2.

The bottom line, then, is that the normal distribution has expectation µ and variance σ2. This explains the
notation for the parameters µ and σ2.
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The fact that the variance is σ2 (so that the standard deviation is σ ) explains our earlier comment that σ

determines the “width” of the normal distribution. Namely, by Chebyshev’s inequality, a constant fraction
of the distribution lies within distance (say) 2σ of the expectation µ .

Note: The above analysis shows that, by means of a simple origin shift and scaling, we can relate any normal
distribution to the standard normal. This means that, when doing computations with normal distributions,
it’s enough to do them for the standard normal. For this reason, books and online sources of mathematical
formulas usually contain tables describing the density of the standard normal. From this, one can read off
the corresponding information for any normal r.v. X ∼ N(µ,σ2) from the formula

P[X ≤ a] = P[Y ≤ a−µ

σ
],

where Y is standard normal.

The normal distribution is ubiquitous throughout the sciences and the social sciences, because it is the
standard model for aggregate data that results from averaging a large number of independent observations
of the same random variable (such as the weights of mosquitos in Berkeley, or the outcome of a physical
experiment). Such averaged data, as is well known, tends to cluster around its mean in a “bell-shaped" curve,
with the correspondence becoming more accurate as the number of observations increases. A theoretical
explanation of this phenomenon is the Central Limit Theorem, which we discuss in Section 2.

1.2 Sum of Independent Normal Random Variables
An important property of the normal distribution is that the sum of independent normal random variables is
also normally distributed. We begin with the simple case when X and Y are independent standard normal
random variables. In this case the result follows because the joint distribution of X and Y is rotationally
symmetric. The general case follows from the translation and scaling property of normal distribution in
Lemma 24.1.

Theorem 24.2. Let X ∼ N(0,1) and Y ∼ N(0,1) be independent standard normal random variables, and
suppose a,b ∈ R are constants. Then Z = aX +bY ∼ N(0,a2 +b2).

Proof. 1 Since X and Y are independent, we know that the joint density of (X ,Y ) is simply the product of
the marginal densities:

f (x,y) = f (x) · f (y) =
1

2π
e−(x2+y2)/2.

The key observation is that f (x,y) is rotationally symmetric around the origin, i.e., f (x,y) only depends on
the value x2 + y2, which is the distance of the point (x,y) from the origin (0,0); see Figure 2.

Thus, f (T (x,y)) = f (x,y) where T is any rotation of the plane R2 about the origin. It follows that for any
set A ⊆ R2,

P[(X ,Y ) ∈ A] = P[(X ,Y ) ∈ T (A)] (2)

where T is a rotation of R2. Now given any t ∈ R, we have

P[Z ≤ t] = P[aX +bY ≤ t] = P[(X ,Y ) ∈ A]

1The following proof and figures are adapted from “Why Is the Sum of Independent Normal Random Variables Normal?” by
B. Eisenberg and R. Sullivan, Mathematics Magazine, Vol. 81, No. 5.
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Figure 2: The joint density function f (x,y) = 1
2π

e−(x2+y2)/2 is rotationally symmetric.

where A is the half plane {(x,y) | ax+by ≤ t}. The boundary line ax+by = t lies at a distance d = t√
a2+b2

from the origin. Therefore, as illustrated in Figure 3, the set A can be rotated into the set

T (A) =
{
(x,y)

∣∣∣∣ x ≤ t√
a2 +b2

}
.

Figure 3: The half plane ax+by ≤ t is rotated into the half plane x ≤ t√
a2+b2 .

By (2), this rotation does not change the probability:

P[Z ≤ t] = P[(X ,Y ) ∈ A] = P[(X ,Y ) ∈ T (A)] = P
[

X ≤ t√
a2 +b2

]
= P

[√
a2 +b2 X ≤ t

]
.

Since the equation above holds for all t ∈ R, we conclude that Z has the same distribution as
√

a2 +b2 X .
Since X has standard normal distribution, we know by Lemma 24.1 that

√
a2 +b2 X has normal distribution

with mean 0 and variance a2 +b2. Hence we conclude that Z = aX +bY also has normal distribution with
mean 0 and variance a2 +b2.

The general case now follows easily from Lemma 24.1 and Theorem 24.2.
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Corollary 24.1. Let X ∼ N(µX ,σ
2
X) and Y ∼ N(µY ,σ

2
Y ) be independent normal random variables. Then

for any constants a,b ∈ R, the random variable Z = aX + bY is also normally distributed with mean µ =
aµX +bµY and variance σ2 = a2σ2

X +b2σ2
Y .

Proof. By Lemma 24.1, Z1 = (X −µX)/σX and Z2 = (Y −µY )/σY are independent standard normal random
variables. We can write:

Z = aX +bY = a(µX +σX Z1)+b(µY +σY Z2) = (aµX +bµY )+(aσX Z1 +bσY Z2).

By Theorem 24.2, Z′ = aσX Z1+bσY Z2 is normally distributed with mean 0 and variance σ2 = a2σ2
X +b2σ2

Y .
Since µ = aµX +bµY is a constant, by Lemma 24.1 we conclude that Z = µ+Z′ is a normal random variable
with mean µ and variance σ2, as desired.

2 The Central Limit Theorem
Recall from an earlier note the Law of Large Numbers for i.i.d. random variables {Xi}: it says that the
probability of any deviation ε > 0, however small, of the sample average Sn

n , where Sn = ∑
n
i=1 Xi, from the

mean tends to zero as the number of observations n in our average tends to infinity. Thus, by taking n large
enough, we can make the probability of any given deviation as small as we like.

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution of
the sample average Sn

n , for large enough n, looks like a normal distribution with mean µ and variance σ2

n .
(Of course, we already know that these are the mean and variance of Sn

n ; the point is that the distribution
becomes normal!) The fact that the standard deviation decreases with n (specifically, as σ√

n ) means that the
distribution approaches a sharp spike at µ .

Recall from the last section that the density of the normal distribution is a symmetrical bell-shaped curve
centered around the mean µ . Its height and width are determined by the standard deviation σ as follows:
the height at the mean x = µ is 1√

2πσ2 ≈ 0.4
σ

; 50% of the mass is contained in the interval of width 0.67σ

either side of the mean, and 99.7% in the interval of width 3σ either side of the mean. (Note that, to get the
correct scale, deviations are on the order of σ rather than σ2.)

To state the Central Limit Theorem precisely (so that the limiting distribution is a constant rather than
something that depends on n), we standardize Sn

n as

Sn
n −µ

σ√
n

=
Sn −nµ

σ
√

n
.

The Central Limit Theorem then says that the distribution of Sn−nµ

σ
√

n converges to the standard normal distri-
bution.

Theorem 24.3 (Central Limit Theorem). Let X1,X2, . . . be a sequence of i.i.d. random variables with com-
mon finite expectation E[Xi] = µ and finite variance Var(Xi) = σ2. Let Sn = ∑

n
i=1 Xi. Then, the distribution

of Sn−nµ

σ
√

n converges to N(0,1) as n → ∞. In other words, for any constant c ∈ R,

P
[

Sn −nµ

σ
√

n
≤ c

]
→ 1√

2π

∫ c

−∞

e−x2/2 dx as n → ∞.

The Central Limit Theorem is a very striking fact. What it says is the following: If we take an average of n
observations of any arbitrary r.v. X , then the distribution of that average will be a bell-shaped curve centered
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Figure 4: Buffon’s Needle.

at µ = E[X ]. Thus all trace of the distribution of X disappears as n gets large: all distributions, no matter
how complex,2 look like the normal distribution when they are averaged. The only effect of the original
distribution is through the variance σ2, which determines the width of the curve for a given value of n, and
hence the rate at which the curve shrinks to a spike.

The Central Limit Theorem immediately tells us that averaged data tends to look normal, even when the
distribution it is drawn from is not itself normal. Since much of the data we work with in real life is the result
of averaging (mean wealth, mean height, mean temperature etc.), it’s not surprising that we deal with the
normal distribution so often. But there’s actually a deeper reason why even (say) the height of a population
itself tends to follow a normal distribution: this is because a person’s height is actually itself the result
of averaging many factors (nutrition, environment, various genetic factors, etc.), so intuitively at least we
would expect it to follow a normal distribution.

3 Buffon’s Needle
Here is a simple yet interesting application of continuous random variables to the analysis of a classical
procedure for estimating the value of π; this is known as Buffon’s needle problem, after its 18th century
inventor Georges-Louis Leclerc, Comte de Buffon.

As illustrated in Figure 4, we are given a needle of length ℓ, and a board ruled with horizontal lines at
distance ℓ apart. The experiment consists of throwing the needle randomly onto the board and observing
whether or not it crosses one of the lines. We shall see below that (assuming a perfectly random throw)
the probability of this event is exactly 2/π . This means that, if we perform the experiment many times and
record the proportion of throws on which the needle crosses a line, then the Law of Large Numbers tells us
that we will get a good estimate of the quantity 2/π , and therefore also of π; and we can use Chebyshev’s
inequality as in the other estimation problems we considered in an earlier note to determine how many
throws we need in order to achieve specified accuracy and confidence.

3.1 Integrating a Joint Density Function
To analyze the experiment, let’s consider what random variables are in play. Note that the position where the
needle lands is completely specified by two random variables: the vertical distance Y between the midpoint
of the needle and the closest horizontal line, and the angle Θ between the needle and the vertical. The r.v. Y

2We do need to assume that the mean and variance of X are finite.
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ranges between 0 and ℓ/2, while Θ ranges between −π/2 and π/2. Since we assume a perfectly random
throw, we may assume that their joint distribution has density f (y,θ) that is uniform over the rectangle
[0, ℓ/2]× [−π/2,π/2]. Since this rectangle has area πℓ

2 , the density should be

f (y,θ) =

{
2

πℓ , for (y,θ) ∈ [0, ℓ/2]× [−π/2,π/2],
0, otherwise.

(3)

Equivalently, Y and Θ are independent random variables, each uniformly distributed in their respective
range. To check our answer, let’s verify that the integral of this density over all possible values is indeed 1:

∫
∞

−∞

∫
∞

−∞

f (y,θ) dy dθ =
∫

π/2

−π/2

∫ ℓ/2

0

2
πℓ

dy dθ =
∫

π/2

−π/2

2y
πℓ

∣∣∣∣ℓ/2

0
dθ =

∫
π/2

−π/2

1
π

dθ =
θ

π

∣∣∣∣π/2

−π/2
= 1.

Since we have a joint distribution, rather than the area under the curve f (x), we are now computing the area
under the “surface" f (y,θ).

Now let E denote the event that the needle crosses a line. How can we express this event in terms of the
values of Y and Θ? Well, by elementary geometry the vertical distance of the endpoint of the needle from
its midpoint is ℓ

2 cosΘ, so the needle will cross the line if and only if Y ≤ ℓ
2 cosΘ. Therefore we have

P[E] = P[Y ≤ ℓ
2 cosΘ] =

∫
π/2

−π/2

∫ (ℓ/2)cosθ

0
f (y,θ) dy dθ .

Substituting the density f (y,θ) from (3) and performing the integration we get

P[E] =
∫

π/2

−π/2

∫ (ℓ/2)cosθ

0

2
πℓ

dy dθ =
∫

π/2

−π/2

2y
πℓ

∣∣∣∣(ℓ/2)cosθ

0
dθ =

1
π

∫
π/2

−π/2
cosθ dθ =

1
π

sinθ

∣∣∣π/2

−π/2
=

2
π
.

This is exactly what we claimed at the beginning of the section!

CS 70, Fall 2025, Note 24 7


	Normal Distribution
	Mean and Variance of a Normal Random Variable
	Sum of Independent Normal Random Variables

	The Central Limit Theorem
	Buffon's Needle
	Integrating a Joint Density Function


