

CS70 – SPRING 2026

LECTURE 1: JAN 20

CS70 Main Staff

- Prof. Alistair Sinclair (OH Mo11-12 & Th 2:30-3:30 in 677 Soda)
First half (discrete math)
- Prof. Yun Song (OH Mo1-2 & Th 5:30-6:30 in 629 Soda)
Second half (counting/probability)
- Head TAs:

Erica Liu

Sam Poder

Gavin Zhang

CS70 Brief Overview

- Logic & proofs
- Graphs
- Modular arithmetic & applications to cryptography, secret sharing, error-correcting codes
- Self-reference, undecidability & uncomputability
- Counting and probability
- Probabilistic algorithms: load-balancing, hashing, estimation, inference...

Killer apps: Examples

- Can we design a “stable” algorithm for matching applicants to college slots?
- Can we share a secret code among a group of generals so that any set of four of them can recover the code but any smaller set has no information about it?
- If 6000 requests are allocated randomly among 1000 servers, what’s the (likely) maximum load on any server?
- We receive a corrupted message along a noisy channel. What is our best guess at the original message? Can we protect against such errors via coding and/or redundancy?
- Can we state a mathematical problem that even the most powerful computers can never solve?

CS70 Policies

- Course web page: www.eecs70.org/
All course materials are on this page.
Visit it daily and **read these policies today!**
- Ed: One-stop shop for all Q&A and announcements:
read policies online for **etiquette**! Visit it daily.
- Email: sp26@eecs70.org (instructors & Head TAs)
Use only for **private** administrative matters!
- Materials: No book. Lecture notes on web page.
Read lecture notes **before & after** each lecture!
- Enrollment: Limit is **510** students. Room size is **481**.
If you don't have a seat, please watch the **webcast**!
[We may stop recording if #students \leq 481.]
Waitlist is processed by staff: Please **DO NOT** email us!

CS70 Policies (cont.)

- Assessment:
Discussion: 5% [13x for full credit]
Mini-Vitamins: 5% [due before lecture; top 13 only]
Homework: 15%
Midterm: 30% [Thu. 3/12, 7-9pm]
Final: 45% [Thu. 5/14, 3-6pm]
- Final exam conflicts **cannot** be accommodated!
Midterm conflicts (e.g., with other exams): you must notify us at least 2 weeks in advance
- Homeworks: weekly (due Saturdays 4pm)
Lowest three HW scores dropped but...
...no late homeworks or excuses accepted!
All homeworks equally weighted; max credit will be given for 73/100 (no extra credit)
No “No-HW” option

CS70 Policies (cont.)

- Resources
 - Lectures + Lecture Notes
 - Homeworks
 - Discussions [2 per week; go to any section; popular times fill up so choose another time; **not** mini lectures]
 - Office hours [go to any; prepare in advance!]
- Collaboration vs Cheating

We strongly encourage collaboration but...

... all your work must be composed only by you!

Zero tolerance for cheating!
- Discussions start **Thu/Fri Jan 22/23**

Office hours/HW parties start **Mon Jan 27**

CS70 FAQs

- This is a Math class but I'm a CS student; why do I have to take it?

(1) You may be designing AI (e.g.) for critical medical decisions

(2) Somebody has to check if ChatGPT is giving good answers!

- Is it just about proofs?

No! Unlike many DiscMath/Prob classes, CS70 is based around “killer apps”

- I didn't do competition Math; will I be able to keep up?

This is not competition Math; no special background is assumed

- Do I need to spend way more than 10 hours a week on CS70?

No! If so, please talk to us about making your study habits more effective

- I've been to lecture and read the notes once; how come I still don't get it?

Math needs to be closely read several times before you get it

CS70 Survival Tips

- Don't fall behind: can't cram this class in the last week
- Read the lecture notes before class (high-level skim) and after class (in depth, more than once!)
- Take the homeworks seriously and start early
- Make use of office hours
- Participate actively in discussion sections
- Form study groups (2-3 people)
- ChatGPT can be your friend—or your worst enemy!

Topic 1 : Logic & Proofs

Goals :

1. Learn mathematical language & notation
2. Learn to write convincing arguments
(e.g., to justify why your programs work as intended)

Propositional Logic

Proposition : A statement that is either true or false

Examples :

- $\sqrt{3}$ is irrational
- $6 - 2 = 3$
- 1 billion is a big number
- Julius Caesar was 5' 8" tall
- $3x + 17 = 42$
- $42/23$
- Julius Caesar was short

Combining Propositions

$P \wedge Q$	"AND"	}	"connectives"
$P \vee Q$	"OR"		
$\neg P$	"NOT"		

Examples :

P : "3 is even" Q : "2+2 = 4"

$P \wedge Q$:

$P \vee Q$:

$\neg P$:

Truth Tables

define connectives

P	Q	$P \wedge Q$	$P \vee Q$	
T	T			
T	F			
F	T			
F	F			

Truth Tables

define connectives

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
T	T	T	T	
T	F	F	T	
F	T	F	T	
F	F	F	F	

Another connective : $P \Rightarrow Q$ "IMPLIES"

Example : "If you pass the exam, you'll get into College"

Q: How can this be false ?

A:

Logical Equivalences

Fact: $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$

We write $(P \Rightarrow Q) \equiv \neg P \vee Q$

Why? Check the truth tables!

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \vee Q$
T	T	T		
T	F	F		
F	T	T		
F	F	T		

Example : "If you pass the exam you'll get into College" \equiv "Either you fail the exam or you'll get into College"

The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$

The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$

Exercise : Use truth tables to check that :

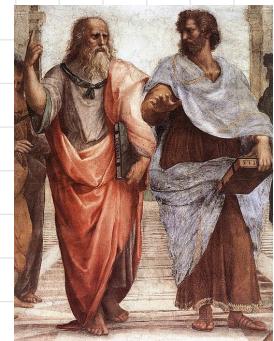
- $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$

[If you don't get into College then you didn't pass the exam]

- $(P \Rightarrow Q) \not\equiv (Q \Rightarrow P)$

[If you get into College then you passed the exam]

One more connective : $P \Leftrightarrow Q$ "IF & ONLY IF"


This is defined by : $(P \Leftrightarrow Q) \equiv (P \Rightarrow Q) \wedge (Q \Rightarrow P)$

Predicates & Quantifiers : First Order Logic

Propositions : Aristotle is a philosopher

Plato is a philosopher

Predicate : $\begin{array}{l} \text{Phil (Aristotle)} \\ \text{Phil (Plato)} \end{array} \quad \} \text{ where } \text{Phil}(x) \text{ denotes } "x \text{ is a philosopher}"$

Quantifiers : $(\forall x \in \mathcal{U}) P(x)$ – universal "for all"
(over some universe \mathcal{U}) $(\exists x \in \mathcal{U}) P(x)$ – existential "exists"

Example : $P(x)$: x is divisible by 2
 $Q(x)$: $x \dots \dots \dots 3$
 $R(x)$: $x \dots \dots \dots 6$

Q: How do we write :
"A nat. number x is div. by 6 if & only if it's div. by both 2 and 3" ?

More examples :

“209 has a divisor larger than 17”

“ $f(x) = x^2 - 4x + 3$ has exactly two distinct real roots”

“There is no largest integer”

Negation : De Morgan's Laws

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

$$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$$

Ex : Check using
truth tables !

With quantifiers :

$$\neg(\forall x P(x)) \equiv \exists x (\neg P(x))$$

$$\neg(\exists x P(x)) \equiv \forall x (\neg P(x))$$

Example

$$\neg(\exists x \forall y \exists z P(x,y,z)) \equiv \forall x \exists y \forall z (\neg P(x,y,z))$$

Fun Example

Bob is on trial for murder.

Bob's attorney never lies.

Judge : " If Bob committed this murder, he didn't act alone "

Attorney : " That's not true ! "

Q : Did the attorney help Bob ?

A :

Fun Example 2

[R. Smulyan]

"A watched Kettle never boils unless it is watched"

Q : true/false/undetermined ?

1. No one who is going to a party fails to brush his/her hair

2. No one looks fascinating if he/she is untidy

3. Opium-eaters have no self-command

Lewis Carroll
Symbolic Logic
1897

4. Everyone who has brushed his/her hair looks fascinating

5. No one wears kid gloves unless he/she is going to a party

6. A person is untidy if she/he has no self-command

Q : What can we say about someone who is wearing kid gloves?

Summary

- Propositions
- Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
- Truth tables ; logical equivalence \equiv
- Implications

$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P \quad (\text{contrapositive})$$

$$\not\equiv Q \Rightarrow P \quad (\text{converse})$$

- Predicates & Quantifiers :

$$\forall x P(x) \quad \exists x P(x)$$

- De Morgan's Laws :

$$\neg \forall x P(x) \equiv \exists x (\neg P(x))$$

$$\neg \exists x P(x) \equiv \forall x (\neg P(x))$$