

CS70 – SPRING 2026

LECTURE 10 : FEB. 19

New Topic : Polynomials

- Basic properties of polynomials

- Polynomials mod Φ

- Application I : Secret Sharing

- Application II : Error-Correcting Codes]

TODAY

NEXT
LEC.

Polynomials (over the real numbers)

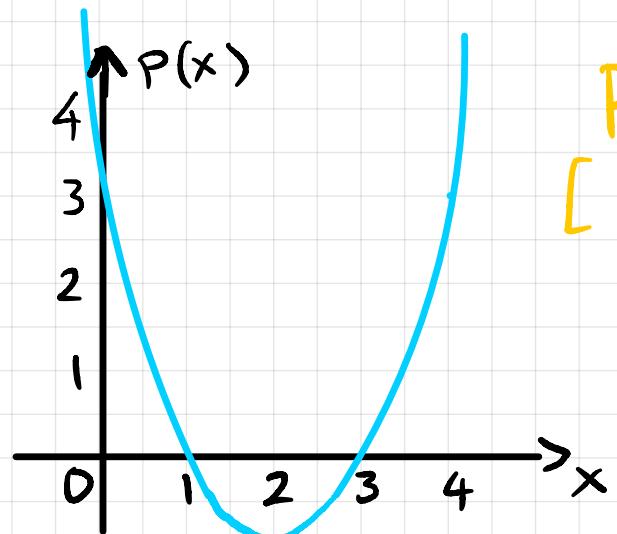
Defn: A polynomial in a single variable x is a function of the form

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$$

degree d

coefficients a_i (real)

Examples: $p(x) = 7x + 3$ (degree 1)



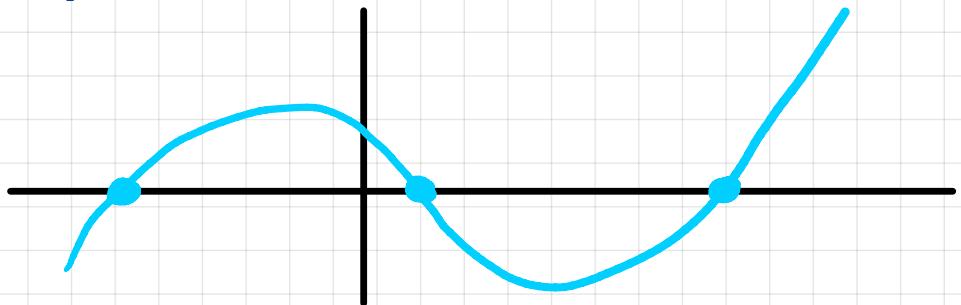
$$\begin{aligned} p(x) &= x^2 - 4x + 3 & \text{(degree 2)} \\ &= (x-3)(x-1) \end{aligned}$$

Defn: a is a root of $p(x)$ if $p(a) = 0$

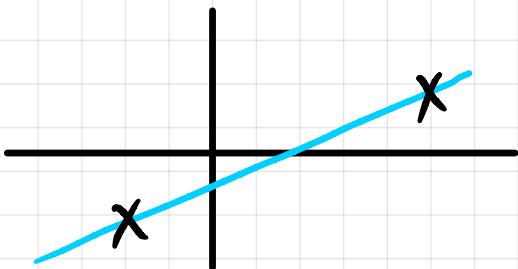
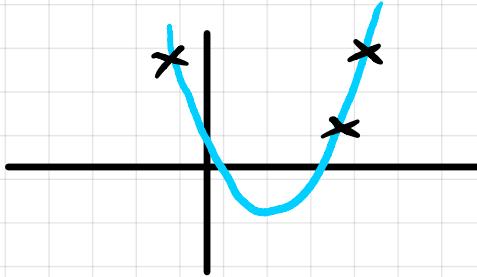
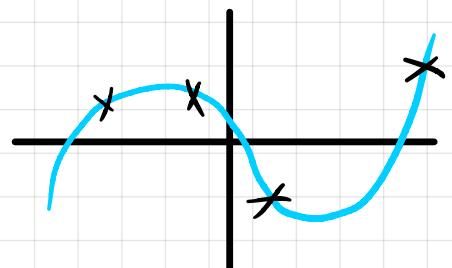
Polynomials: 2 Key Properties

Property 1 : A non-zero polynomial of degree d has at most d roots

E.g. $d=3$ (cubic)



Property 2 : Given $d+1$ pairs $(x_1, y_1), (x_2, y_2), \dots, (x_{d+1}, y_{d+1})$, with all the x_i distinct, there exists a unique polynomial of degree $\leq d$ s.t. $p(x_i) = y_i$ for $1 \leq i \leq d+1$



Property 1 : A non-zero polynomial of degree d has at most d roots

Proof : Let a_1, \dots, a_d be distinct roots of p . We (sketch) show p can be written as

$$p(x) = c(x-a_1)(x-a_2) \dots (x-a_d) \quad (*)$$

for some constant c .

Assuming $(*)$, if $a \neq a_1, \dots, a_d$ then

$$p(a) = c(a-a_1)(a-a_2) \dots (a-a_d) \neq 0$$

So no other a is a root !

□

Proof of $(*)$: see Notes (induction on d)

Property 2 : Given $d+1$ pairs $(x_1, y_1), (x_2, y_2), \dots, (x_{d+1}, y_{d+1})$, with all the x_i distinct, there exists a unique polynomial of degree $\leq d$ s.t.
 $p(x_i) = y_i$ for $1 \leq i \leq d+1$

Proof : We give an algorithm, called "Lagrange Interpolation", to construct $p(x)$

Method : Suppose we can construct "basis" polynomials $\Delta_i(x)$ for $1 \leq i \leq d+1$ s.t.

$$\Delta_i(x) = \begin{cases} 1 & \text{if } x = x_i \\ 0 & \text{if } x = x_j, j \neq i \end{cases}$$

Then we set $p(x) = \sum_{i=1}^{d+1} y_i \Delta_i(x)$ ✓

Suppose we can construct "basis" polynomials $\Delta_i(x)$ for $1 \leq i \leq d+1$ s.t.

$$\Delta_i(x) = \begin{cases} 1 & \text{if } x = x_i \\ 0 & \text{if } x = x_j, j \neq i \end{cases}$$

$$\text{Let } q_i(x) = (x - x_1)(x - x_2) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{d+1})$$

Then :

- degree of q_i is d
- $q_i(x_j) = 0 \quad \forall j \neq i$
- $q_i(x_i) = \prod_{j \neq i} (x_i - x_j) \neq 0$

So we can define

$$\Delta_i(x) = \frac{q_i(x)}{q_i(x_i)}$$

$$= \frac{(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{d+1})}{(x_i - x_1)(x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_{d+1})}$$

Example : Find degree-2 polynomial through $(0, -1)$, $(2, 2)$, $(3, 4)$

Proof that $p(x)$ is unique :

Suppose for ~~※~~ \exists two different polynomials $P_1(x), P_2(x)$ of degree $\leq d$ that both go through the $d+1$ points $(x_1, y_1), \dots, (x_{d+1}, y_{d+1})$

Then $q(x) := P_1(x) - P_2(x)$ is a non-zero poly. of degree $\leq d$.

But $q(x_i) = P_1(x_i) - P_2(x_i) = 0$ for x_1, x_2, \dots, x_{d+1}

So q is a poly. of degree $\leq d$ with $d+1$ roots! ~~※~~
Prop. 1

This concludes proof of Property 2. \square

Polynomials + Modular Arithmetic

Let p be prime

Integers mod p "behave like" real numbers, in that they support:

- 0 & 1 $[x+0=x; x \cdot 0=0; x \cdot 1=x]$

- operations of addition, subtraction, multiplication, division (inverses)

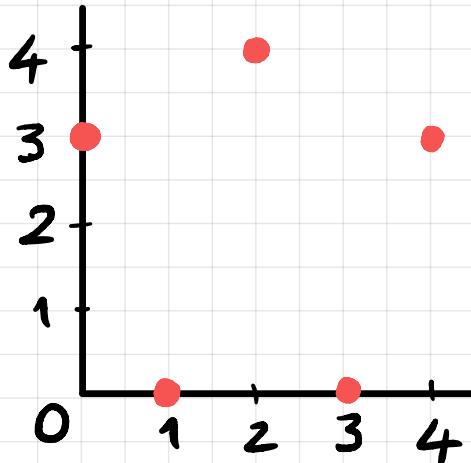
Technically, integers mod p are a field

Denote this field \mathbb{Z}_p or $GF[p]$

Unlike \mathbb{R} , \mathbb{Q} , \mathbb{C} , $GF[p]$ is a finite field

Polynomials over GF[P]

Example : $P(x) = x^2 - 4x + 3 \pmod{5}$



$$\begin{aligned}P(0) &= 3 \\P(1) &= 0 \\P(2) &= 4 \\P(3) &= 0 \\P(4) &= 3\end{aligned}$$

Key Fact : Polynomials over $GF[P]$ "behave like" real polynomials, in that they satisfy Properties 1 & 2 !

We can use Property 2 to count polynomials over $GF[p]$

Q: How many different polys of degree $\leq d$ are there $(\bmod p)$?

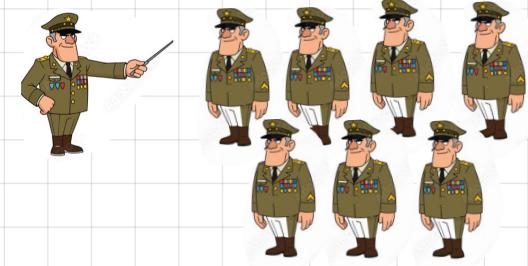
A :

Q: Suppose I give you $k \leq d+1$ points. How many such polys. go through those points ?

A :

Application: Secret Sharing

Commander wants to share a secret code s among n generals s.t.



- any group of $\geq k$ generals can figure out s
- any group of $< k$ generals has no information about s

Method

- Commander constructs a random polynomial $p(x)$ of degree $K-1 \pmod{p}^*$ s.t. $p(0)=s$
- Commander gives each general i the value $p(i) \quad (i=1, 2, \dots, n)$

* Need to choose $p > s$
Eg. $p = 1,000,003$
for 6-digit codes

- Commander constructs a random polynomial $p(x)$ of degree $k-1 \pmod p$ s.t. $p(0) = s$
- Commander gives each general i the value $p(i) \quad (i=1, 2, \dots, n)$

Why does this work ?

(i) Sp. k generals get together

(ii) Sp. only $k-1$ (or fewer) generals get together

$$\begin{array}{l|l} \text{Example: } n=7 \text{ generals} & P=11 \\ & k=3 \\ & S=8 \end{array}$$

Random degree-2 polynomial over $GF[11]$:

$$p(x) = x^2 + 6x + 8$$

$\underbrace{}_s$

$$\begin{array}{ll} p(1) = 4 & \rightarrow (1, 4) \text{ to general 1} \\ p(2) = 2 & \rightarrow (2, 2) \text{ to gen. 2} \\ p(3) = 2 & \rightarrow (3, 2) \text{ to gen. 3} \\ \vdots & \vdots \\ p(7) = 0 & \rightarrow (7, 0) \text{ to gen. 7} \end{array} \quad \left. \right\}$$

any 3 generals
have 3 pts. on $p(x)$
⇒ can use Lagrange
to recover $p(x)$

any 2 generals
have 2 pts. on $p(x)$
⇒ consistent with
 $P=11$ values for $p(0)$

<u>Example</u>	$n = 7$ generals	$P = 11$	Polynomial
	$k = 3$	$S = 8$	$P(x) = x^2 + 6x + 8$

Suppose generals 1, 2, 7 get together

They have points $(1, 4), (2, 2), (7, 0)$

Lagrange:

$$\Delta_1(x) = \frac{(x-2)(x-7)}{(1-2)(1-7)} = 6^{-1}(x-2)(x-7) \equiv 2(x-2)(x-7) \pmod{11}$$

$[x_1=1]$

$$\Delta_2(x) = \frac{(x-1)(x-7)}{(2-1)(2-7)} = -5^{-1}(x-1)(x-7) \equiv 2(x-1)(x-7) \pmod{11}$$

$[x_2=2]$

$$\Delta_3(x) = \text{whatever}$$

$[x_3=7]$

Hence $P(x) = 4 \cdot \Delta_1(x) + 2 \cdot \Delta_2(x) + 0 \cdot \Delta_3(x)$

$$= 8(x-2)(x-7) + 4(x-1)(x-7) = \dots \equiv x^2 + 6x + 8 \pmod{11}$$

Secret sharing works the same way over \mathbb{R} .
Why do we do it over $GF[p]$?

- Keeps all arithmetic exact and numbers moderate sized integers. (Note : even over \mathbb{R} , we would choose integer coeffs. for $p(x)$)
- Can precisely quantify how much info. any subset of generals have
- With real polynomials, smaller group of generals can use the fact that s is an integer to learn things about it !

over \mathbb{R}

Example : Sp. $\langle P(x) = ax^2 + bx + c \text{ and 2 generals have the points } (1, 0) \text{ and } (2, 6) \rangle$.

Then they know :

$$\begin{aligned} P(1) &= a + b + c = 0 \\ P(2) &= 4a + 2b + c = 6 \end{aligned}$$

solve for b, c in terms of a :

$$\begin{aligned} b &= 5 - 3a \\ c &= 2a - 6 \end{aligned}$$

So $P(x) = ax^2 + (5-3a)x + (2a-6)$

And a must be an integer

So the secret $s = P(0) = 2a - 6$ is even !