

CS70 – SPRING 2026

LECTURE 1 : JAN 20

Topic 1 : Logic & Proofs

Goals :

1. Learn mathematical language & notation
2. Learn to write convincing arguments
(e.g., to justify why your programs work as intended)

Propositional Logic

Proposition : A statement that is either true or false

Examples :

- $\sqrt{3}$ is irrational ✓ T
- $6 - 2 = 3$ ✓ F
- 1 billion is a big number X
- Julius Caesar was 5' 8" tall ✓ ?
- $3\cancel{0} + 17 = 42$ X
- $42/23$ X
- Julius Caesar was short X

Combining Propositions

$P \wedge Q$

"AND"

$P \vee Q$

"OR"

$\neg P$

"NOT"

}

"connectives"

Examples :

F P : "3 is even" Q : "2+2 = 4" T

$P \wedge Q$: F

$P \vee Q$: T

$\neg P$: T

Truth Tables

define connectives

P	Q	$P \wedge Q$	$P \vee Q$	
T	T	T	T	
T	F	F	T	
F	T	F	T	
F	F	F	F	

Truth Tables

define connectives

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
T	T	T	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

Another connective : $P \Rightarrow Q$ "IMPLIES"

Example : "If you pass the exam, you'll get into College"

Q: How can this be false ?

A: If you pass exam but don't get into college

If pigs can whistle then horses can fly \textcircled{T}

Logical Equivalences

Fact: $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$

We write $(P \Rightarrow Q) \equiv \neg P \vee Q$

Why? Check the truth tables!

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \vee Q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	F
F	F	T	T	T

Example : "If you pass the exam you'll get into College" \equiv "Either you fail the exam or you'll get into College"

The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$

The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$

Exercise : Use truth tables to check that :

- $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$

[If you don't get into College then you didn't pass the exam]

- $(P \Rightarrow Q) \not\equiv (Q \Rightarrow P)$

[If you get into College then you passed the exam]

One more connective : $P \Leftrightarrow Q$ "IF & ONLY IF"

This is defined by : $(P \Leftrightarrow Q) \equiv (P \Rightarrow Q) \wedge (Q \Rightarrow P)$

Predicates & Quantifiers : First Order Logic

Propositions : Aristotle is a philosopher

Plato is a philosopher

Predicate : $\begin{array}{l} \text{Phil (Aristotle)} \\ \text{Phil (Plato)} \end{array} \quad \} \text{ where } \text{Phil}(x) \text{ denotes } "x \text{ is a philosopher}"$

Quantifiers : $(\forall x \in \mathcal{U}) P(x)$ – universal "for all"
(over some universe \mathcal{U}) $(\exists x \in \mathcal{U}) P(x)$ – existential "exists"

Example : $P(x)$: x is divisible by 2
 $Q(x)$: $x \dots \dots \dots 3$
 $R(x)$: $x \dots \dots \dots 6$

$(\forall x \in \mathbb{N}) (R(x) \iff (P(x) \wedge Q(x)))$

Q: How do we write :
"A nat. number x is div. by 6 if & only if it's div. by both 2 and 3" ?

More examples :

“ $x|y$ ” means
 x divides y

“209 has a divisor larger than 17”
 $(\exists x \in \mathbb{N})(x > 17 \wedge x|209)$

“ $f(x) = x^2 - 4x + 3$ has exactly two distinct real roots”
 $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(f(x) = 0 \wedge f(y) = 0 \wedge x \neq y)$
 $\wedge \forall x \forall y \forall z ((f(x) = 0 \wedge f(y) = 0 \wedge f(z) = 0) \Rightarrow ((x = y) \vee (y = z)) \vee (x = z))$

“There is no largest integer”

$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(y > x)$

$(\exists y \in \mathbb{Z})(\forall x \in \mathbb{Z})(y > x)$ ~~††~~

Negation : De Morgan's Laws

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

$$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$$

} Ex : Check using
truth tables !

With quantifiers :

$$\neg(\forall x P(x)) \equiv \exists x (\neg P(x))$$

$$\neg(\exists x P(x)) \equiv \forall x (\neg P(x))$$

Example

$$\neg(\exists x \forall y \exists z P(x,y,z)) \equiv \forall x \exists y \forall z (\neg P(x,y,z))$$

Fun Example

Bob is on trial for murder.

Bob's attorney never lies.

$P \Rightarrow Q$

Judge : "If Bob committed this murder, he didn't act alone"

Attorney : "That's not true!"

Q : Did the attorney help Bob ?

A : NO ! Attorney is saying that Bob committed the murder and acted alone

Fun Example 2

[R. Smulyan]

"A watched kettle never boils unless it is watched"

Q : true/false/undetermined ?

A: "P unless Q" \equiv $\neg P \Rightarrow Q \equiv P \vee Q$

Here P is $W(x) \Rightarrow \neg B(x)$

Q is $W(x)$

So "P unless Q" $\equiv P \vee Q$

$$\equiv \forall x ((W(x) \Rightarrow \neg B(x)) \vee W(x))$$

\equiv TRUE (if $W(x)$ is false then $W(x) \Rightarrow \neg B(x)$ is true)

1. No one who is going to a party fails to brush his/her hair

$$\forall x (P(x) \Rightarrow B(x))$$

2. No one looks fascinating if he/she is untidy

$$\forall x (U(x) \Rightarrow \neg F(x)) \quad F(x) \Rightarrow \neg U(x)$$

3. Opium-eaters have no self-command

$$\forall x (O(x) \Rightarrow \neg S(x))$$

4. Everyone who has brushed his/her hair looks fascinating

$$\forall x (B(x) \Rightarrow F(x))$$

5. No one wears kid gloves unless he/she is going to a party

$$\forall x (G(x) \Rightarrow P(x))$$

6. A person is untidy if she/he has no self-command

$$\forall x (\neg S(x) \Rightarrow U(x))$$

Lewis Carroll
Symbolic Logic
1897

Q : What can we say about someone who is wearing kid gloves?

$$\forall x (G(x) \Rightarrow P(x) \Rightarrow B(x) \Rightarrow F(x) \Rightarrow \neg U(x) \Rightarrow S(x) \Rightarrow \neg O(x))$$

Summary

- Propositions
- Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
- Truth tables ; logical equivalence \equiv
- Implications

$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P \quad (\text{contrapositive})$$

$$\not\equiv Q \Rightarrow P \quad (\text{converse})$$

- Predicates & Quantifiers :

$$\forall x P(x) \quad \exists x P(x)$$

- De Morgan's Laws :

$$\neg \forall x P(x) \equiv \exists x (\neg P(x))$$

$$\neg \exists x P(x) \equiv \forall x (\neg P(x))$$