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Bt <ides ave per—Facf SRUAAVES
(2- 32 )Y = (-3L)
Ta(\,(LV\S sQ uave vools :
2-3% = -3
A’ﬂH'W\ﬁ %, 4o bkl sudes :
2 = |

a*=b"



Waw‘)le
"Theovew : 9 < 4
Pﬂ)\f : C[eart\l] -3 < 2
Squtﬂ bt sules :
S o L

a<b YcZch




Sample 4

\\ /
Theovem :FO»/QVL:‘ Postk‘we veal X, X+-7\? 7 L

‘\VV_DOF”'- AvéSummﬂ X+LX 74, swe X770 we
Cam va,thl,y boYla sudes \acj x ‘o get
X+ | 7 4 x
e &-2)" 2 O
Tis s true for auy veal % .

Hewe x+1 74 for all ps.veal x




SMV\AW\OU/\j

O Pfoof fj\:esr
Dwed P\/ooF
Proof bj Co\/\fm\)asi.h}ovx
Proof b\j Coutvadidhon
Proof \oj (ases

o Sowe common pitfalls

o) [\/fo lecWe : P»/oc)c bﬂ 3/\0\\/\0\16\4




