

CS70 – SPRING 2026

LECTURE 3 : JAN 27

Previous Lecture

- Proof types:
 - Direct Proof
 - Proof by Contraposition : instead of proving $P \Rightarrow Q$, prove $\neg Q \Rightarrow \neg P$
 - Proof by Contradiction : assuming $\neg P$ leads to a contradiction — so P is true!
 - Proof by Cases : consider an exhaustive set of cases and prove P holds in every case
- Some common pitfalls
- Today : Proof by Induction

Proof by Induction

Goal : Prove $(\forall n \in \mathbb{N}) P(n)$

E.g. $P(n)$ is : $\sum_{i=0}^n i^2 = \frac{1}{6} n(n+1)(2n+1)$

Approach :

BASE
CASE

Prove $P(0)$

IND. HYPOTHESIS

IND.
STEP

For arbitrary $k \geq 0$, prove $P(k) \Rightarrow P(k+1)$

Hence $\forall n \in \mathbb{N} P(n)$ holds \square

Approach :

BASE CASE

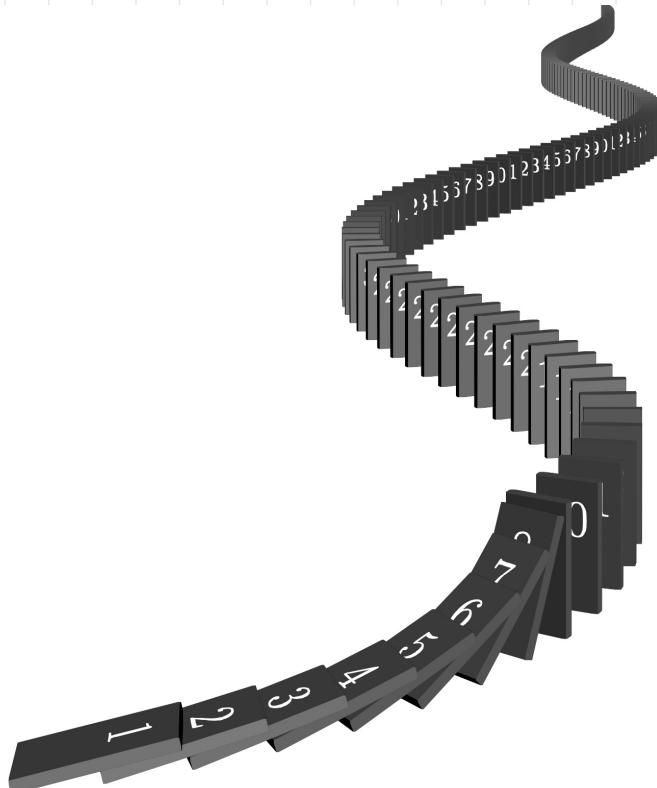
IND.
STEP

Prove $P(0)$

For arbitrary $k \geq 0$, prove $P(k) \Rightarrow P(k+1)$

Hence the N P(n) holds \square

IND. HYPOTHESIS



Theorem : $\forall n \in \mathbb{N} \quad \sum_{i=0}^n i^2 = \frac{1}{6} n(n+1)(2n+1)$

Proof : By induction on n . $P(n)$

Base Case :

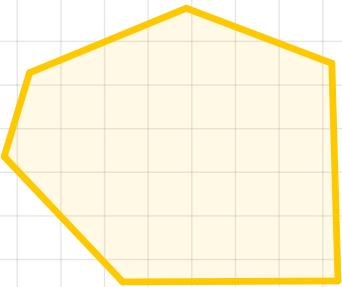
Inductive Step : For arbitrary $k \geq 0$, assume $P(k)$ and prove $P(k+1)$.

$$P(k) : \sum_{i=0}^k i^2 = \frac{1}{6} k(k+1)(2k+1)$$

$$P(k+1) : \sum_{i=0}^{k+1} i^2 = \frac{1}{6} (k+1)(k+2)(2(k+1)+1)$$

Theorem : For all $n \geq 3$, the sum of the interior angles of a convex polygon with n sides is $(n-2)\pi$

E.g. :



$$n = 6$$

$$\text{angle sum} = 4\pi$$

\nwarrow
 $P(n)$

Proof : Induction on n .

Base case :

Inductive Step :

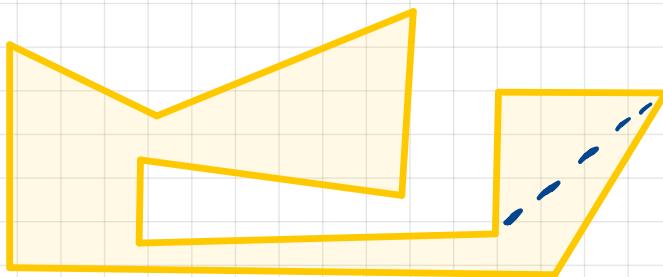
Notes

1. Invalid proof ("build-up" vs "break-down")

Start from a k -gon and add a triangle to get a $(k+1)$ -gon

2. Theorem also holds for non-convex polygons

E.g.



... but harder to show
you can always cut
off a triangle

Strengthening the Induction Hypothesis

Theorem : $(\forall n \geq 1) \sum_{i=1}^n \frac{1}{i^2} \leq 2$

Proof : Base case :

Inductive step :

Strengthening the Induction Hypothesis

Theorem : $(\forall n \geq 1) \sum_{i=1}^n \frac{1}{i^2} \leq 2 - \frac{1}{n}$

Proof : Base case : $P(1) : \frac{1}{1^2} = 1 \leq 2 - \frac{1}{1} = 1 \quad \checkmark$

Inductive step : $P(k) : \sum_{i=1}^k \frac{1}{i^2} \leq 2 - \frac{1}{k}$

What about $P(k+1)$?

$$\sum_{i=1}^{k+1} \frac{1}{i^2} = \sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$

$$\leq 2 - \frac{1}{k+1} \quad \checkmark$$

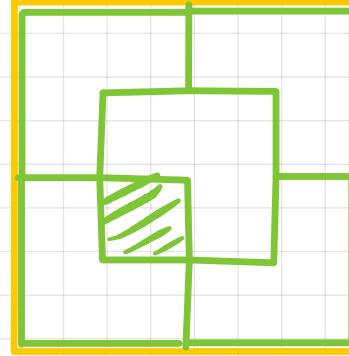
algebra

□

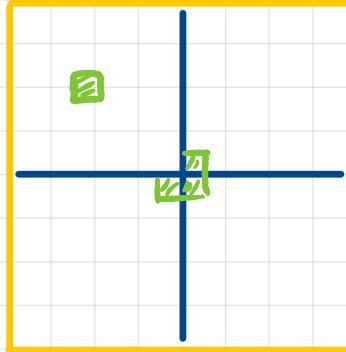
Theorem : For any $n \geq 1$, any $2^n \times 2^n$ chessboard can be tiled with \square tiles, leaving one hole adj. to center

E.g. $n = 2$:

Proof : Base case $P(1)$: 2×2



Inductive Step :



$2^{k+1} \times 2^{k+1}$ board :
divide into 4
 $2^k \times 2^k$ boards

- Put the hole wherever you want
- Put three more holes adj. to center
- Tile each of the 4 $2^k \times 2^k$ boards with holes in these positions
- Fill in the three holes at center with one \square tile

assuming
 $P(k)$

"Strong" Induction

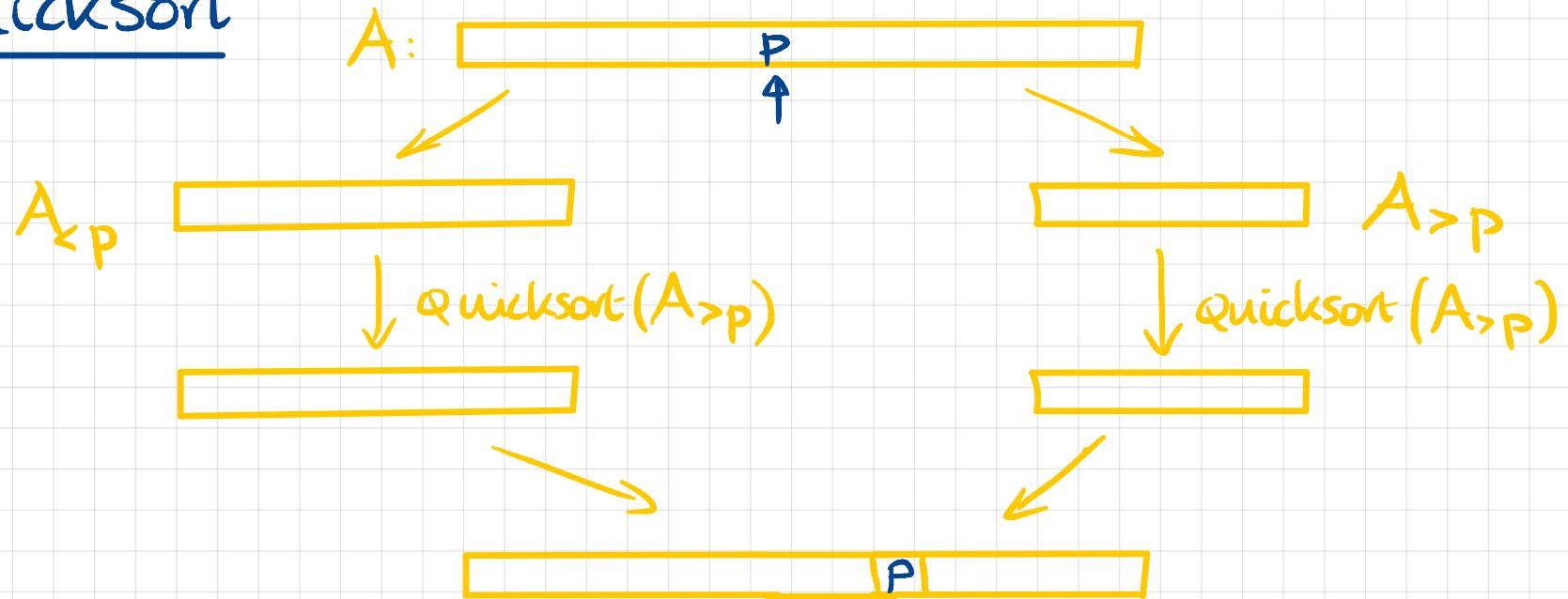
When proving $P(k+1)$, we can assume all of $P(0), P(1), \dots, P(k)$ (not just $P(k)$)

Theorem [Euclid] : Every integer $n > 1$ can be written as the product of primes

Proof : Base case :

Inductive step :

Quicksort



Theorem : Quicksort (A) correctly sorts array A (of length n)

Proof : Base cases:

Inductive step :

Fibonacci Numbers

$$F(0) = 0, \quad F(1) = 1$$

$$F(n) = F(n-1) + F(n-2) \quad \forall n \geq 2$$

Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Fibonacci's Rabbits:

Theorem : $(\forall n \geq 0) F(n) = \frac{\varphi^n - \psi^n}{\sqrt{5}}$, where φ, ψ

are the roots of $x^2 - x - 1$, i.e., $\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618$

$$\psi = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

Note : $F(n) \approx \frac{1}{\sqrt{5}} \cdot 1.618^n$ for large n [E.g. $F(15) = 610$; $\frac{1.618^{15}}{\sqrt{5}} = 609.81$]

Theorem : $(\forall n \geq 0) F(n) = \frac{\varphi^n - \psi^n}{\sqrt{5}}$, where φ, ψ
 are the roots of $x^2 - x - 1$, i.e., $\varphi, \psi = \frac{1 \pm \sqrt{5}}{2}$

Proof : Base cases :

$$n=0 : F(0) = \frac{\varphi^0 - \psi^0}{\sqrt{5}} = \frac{1-1}{\sqrt{5}} = 0 \quad \checkmark$$

$$n=1 : F(1) = \frac{\varphi^1 - \psi^1}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1 \quad \checkmark$$

Inductive step : Assume $F(n) = \frac{\varphi^n - \psi^n}{\sqrt{5}}$ & $F(n-1) = \frac{\varphi^{n-1} - \psi^{n-1}}{\sqrt{5}}$

$$\begin{aligned} \text{Then } F(n+1) &= F(n) + F(n-1) \\ &= \frac{\varphi^n - \psi^n}{\sqrt{5}} + \frac{\varphi^{n-1} - \psi^{n-1}}{\sqrt{5}} \\ &= \frac{1}{\sqrt{5}} \left[(\varphi^n + \varphi^{n-1}) - (\psi^n + \psi^{n-1}) \right] \\ &= \frac{1}{\sqrt{5}} \left[\varphi^{n+1} - \psi^{n+1} \right] \end{aligned}$$

WHY? $\varphi^2 = \varphi + 1$
 $\Rightarrow \varphi^{n+1} = \varphi^n + \varphi^{n-1}$
 Same for ψ

✓

Induction Proof Fails

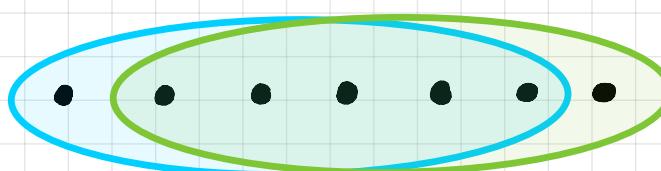
"Theorem" : All iPhones are the same color

"Proof" : Induction on the number, n , of iPhones

Base case : $n=1$ obvious ✓

Ind. step : Assume any set of k iPhones are same color

Consider a set of $k+1$ iPhones :



Blue set contains k iPhones \Rightarrow all same color

Green " " " " " " " " " " " "

And both colors are the same since there's a phone in overlap

Hence $P(k) \Rightarrow P(k+1)$

"Theorem" : $\forall n \in \mathbb{N} \quad \sum_{i=0}^n i^2 = \frac{1}{6}(2n^3 + 3n^2 + n + 5)$

Note: Earlier we proved $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6}(2n^3 + 3n^2 + n)$!

"Proof" : Base case : easy ✓

Inductive Step :

$$\sum_{i=0}^{k+1} i^2 = \sum_{i=0}^k i^2 + (k+1)^2$$

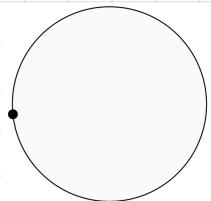
$$= \frac{1}{6}(2k^3 + 3k^2 + k + 5) + (k+1)^2$$

$$= \frac{1}{6}(2k^3 + 3k^2 + k + 5 + 6k^2 + 12k + 6)$$

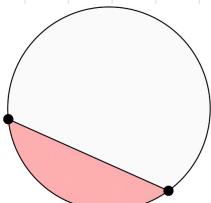
$$= \frac{1}{6}(2(k+1)^3 + 3(k+1)^2 + (k+1) + 5) \quad \checkmark$$

Pitfalls of "Pattern Recognition"

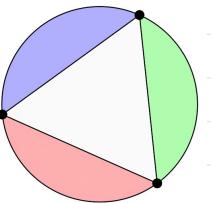
Place n points around a circle (general position) and draw a chord between every pair. How many regions?



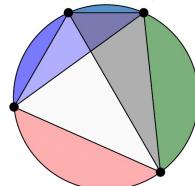
$$n = 1$$
$$R(n) = 1$$



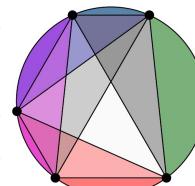
$$n = 2$$
$$R(n) = 2$$



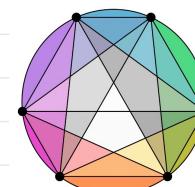
$$n = 3$$
$$R(n) = 4$$



$$n = 4$$
$$R(n) = 8$$



$$n = 5$$
$$R(n) = 16$$



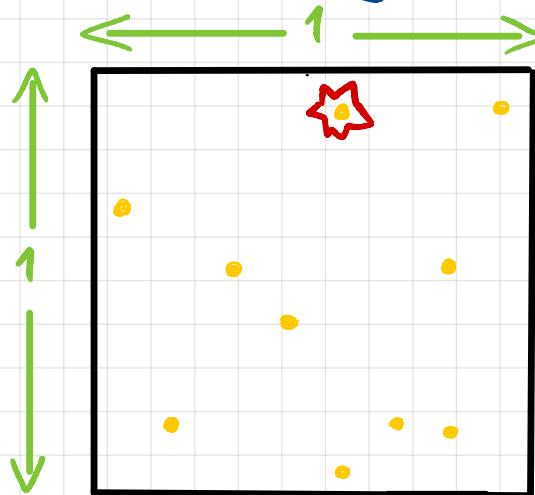
$$n = 6$$
$$R(n) = ??$$

"Guess": $R(n) = 2^{n-1}$

"Proof": Chords from each new point divide all previous regions

Fun Problem

"Colliding Particles"



- particles in $1\text{m} \times 1\text{m}$ box
- when "awake", particles move at 1m/sec. in any direction we want — and can change direction
- awake particles wake up any particles they hit
- at time 0, there one awake particle

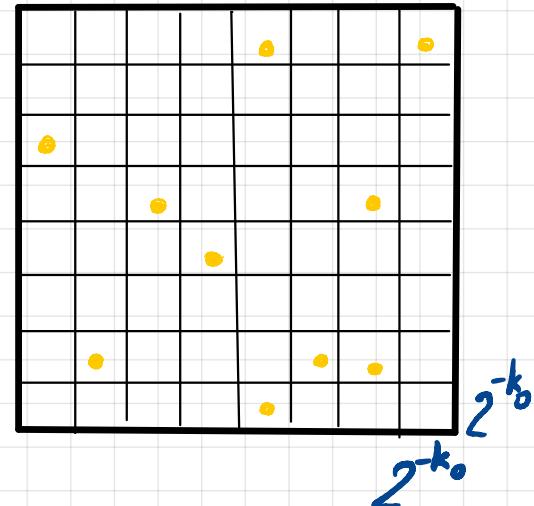
Claim: Can wake up all particles in ≤ 10 seconds

Claim: Can wake up all particles in ≤ 10 seconds

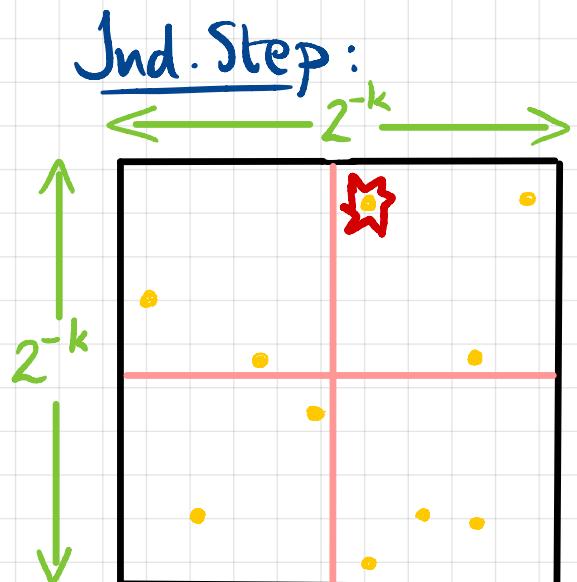
Proof: Repeatedly bisect box until ≤ 1 particle per cell:
say k_0 bisections \rightarrow cells are $2^{-k_0} \times 2^{-k_0}$.

Induction on box dimension:

$P(k)$: Can wake all particles in $2^{-k} \times 2^{-k}$ box
in $\leq 10 \cdot 2^{-k}$ secs, starting with 1 awake particle

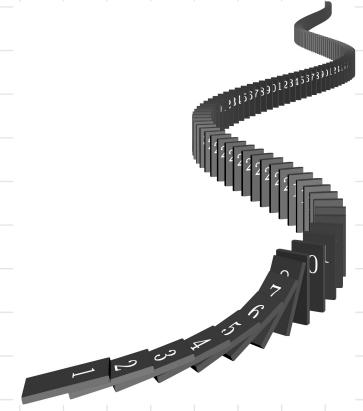


Base: $P(k_0)$ ✓ (takes 0 secs. for 1 cell)



- Bisect box into $4 \cdot 2^{-(k+1)} \times 2^{-(k+1)}$ boxes
- Awake particle visits one particle per box and wakes them up — takes time $\leq 25 \cdot 2^{-k} < 5 \cdot 2^{-k}$ secs.
- Solve 4 subproblems on $2^{-(k+1)} \times 2^{-(k+1)}$ boxes in parallel \rightarrow time $\leq 10 \cdot 2^{-(k+1)} = 5 \cdot 2^{-k}$
- Total time $\leq (5 \cdot 2^{-k}) + (5 \cdot 2^{-k}) = 10 \cdot 2^{-k}$ ✓

Summary



- Principle of Induction
 - Base case $P(0)$ (or $P(1)$ etc.)
 - Inductive step : $\forall k \ P(k) \Rightarrow P(k+1)$
- Strengthening the hypothesis
- Strong induction : $P(0) \wedge P(1) \wedge \dots \wedge P(k) \Rightarrow P(k+1)$
- Induction & recursion
- Some common errors

- Next lecture : Stable Matching