

CS70 – SPRING 2026

LECTURE 5 : FEB. 3

Today : Graphs

Goals

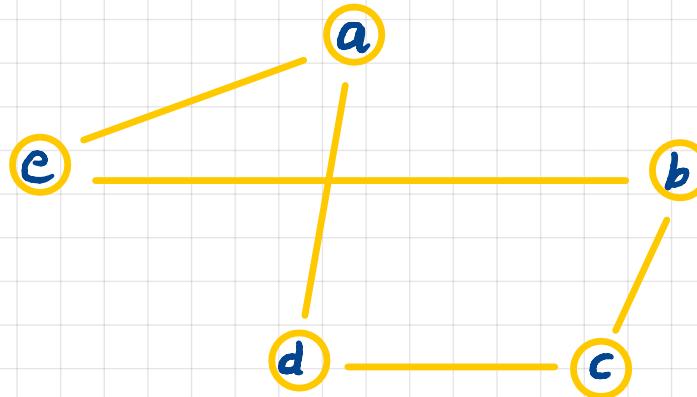
- Understand graphs as an important model for many phenomena in CS & real world
- Explore some basic properties of graphs :
 - paths in graphs
 - trees & complete graphs
 - planar graphs
 - connectivity & hypercubes

} next
lecture

Graphs

$G = (V, E)$

vertices edges

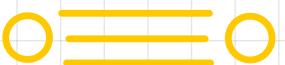


$$V = \{a, b, c, d, e\}$$

$$E = \{ \{a, e\}, \{a, d\}, \{e, b\}, \{b, c\}, \{c, d\} \}$$

An edge is an unordered pair of vertices

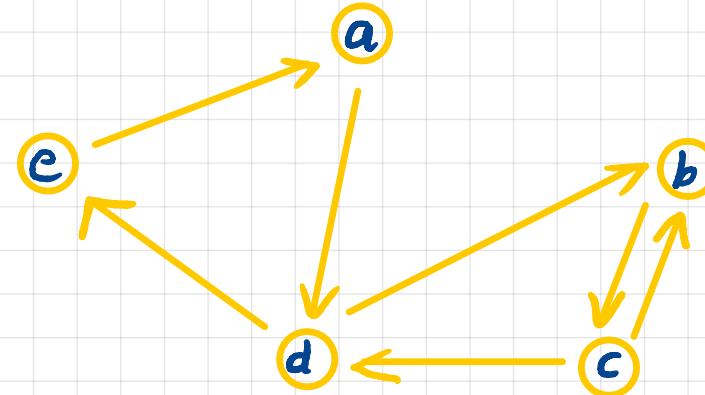
Unless otherwise stated, we don't allow loops ?
or multiple edges



i.e., our graphs are simple graphs, not multigraphs

Directed Graphs

$$G = (V, E)$$



$$V = \{a, b, c, d, e\}$$

$$E = \{(e, a), (d, e), (a, d), (d, b), (b, c), (c, b), (c, d)\}$$

Same, except edges are now ordered pairs of vertices

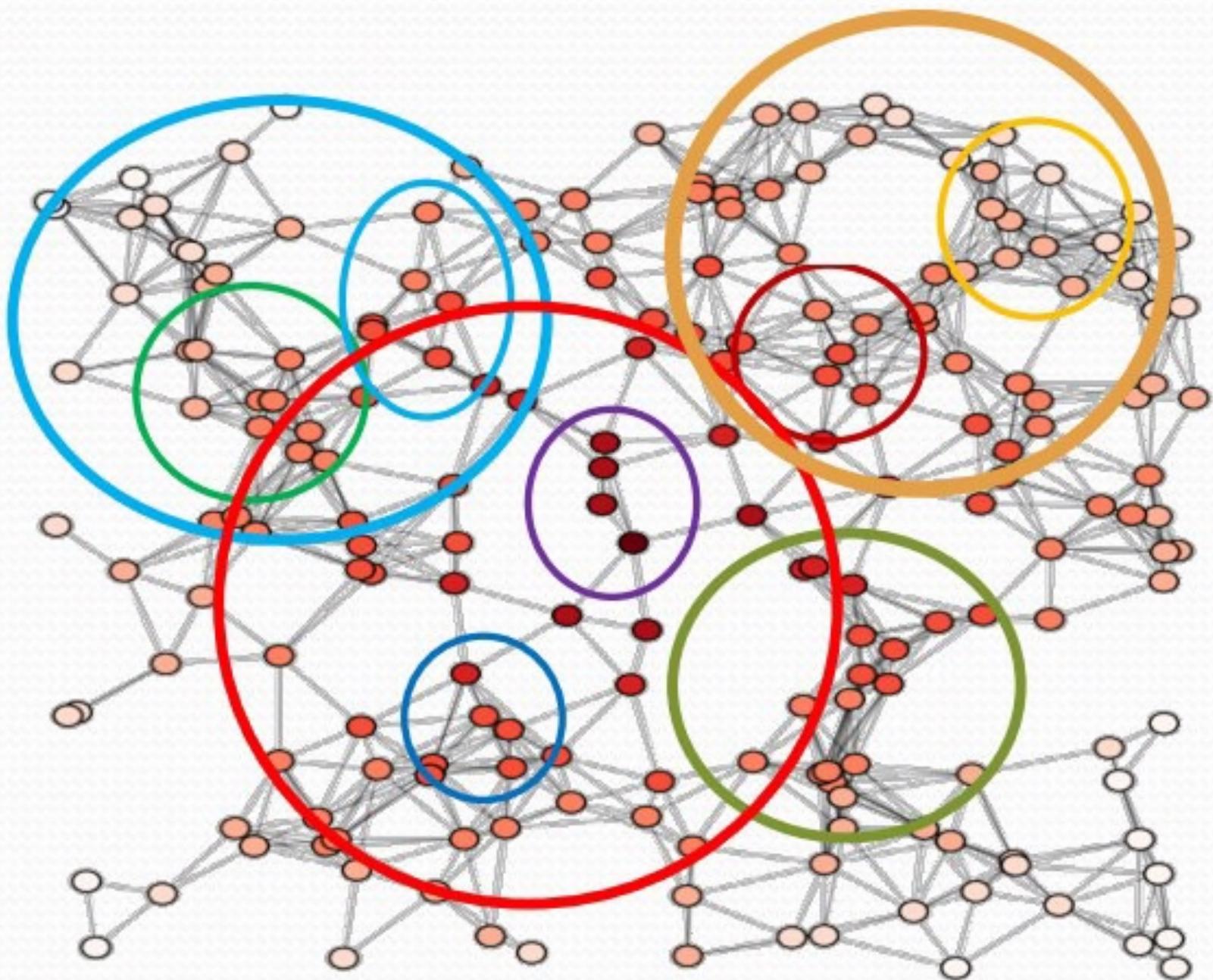
Note : Undirected graphs are a special case of directed graphs :

$$\text{---} \equiv \overleftarrow{\text{---}} \overrightarrow{\text{---}}$$

Examples of Undirected Graphs

- road networks (no one-way streets)
- power grids
- social networks ("knows")
- graphical models (ML)

⋮
⋮
⋮

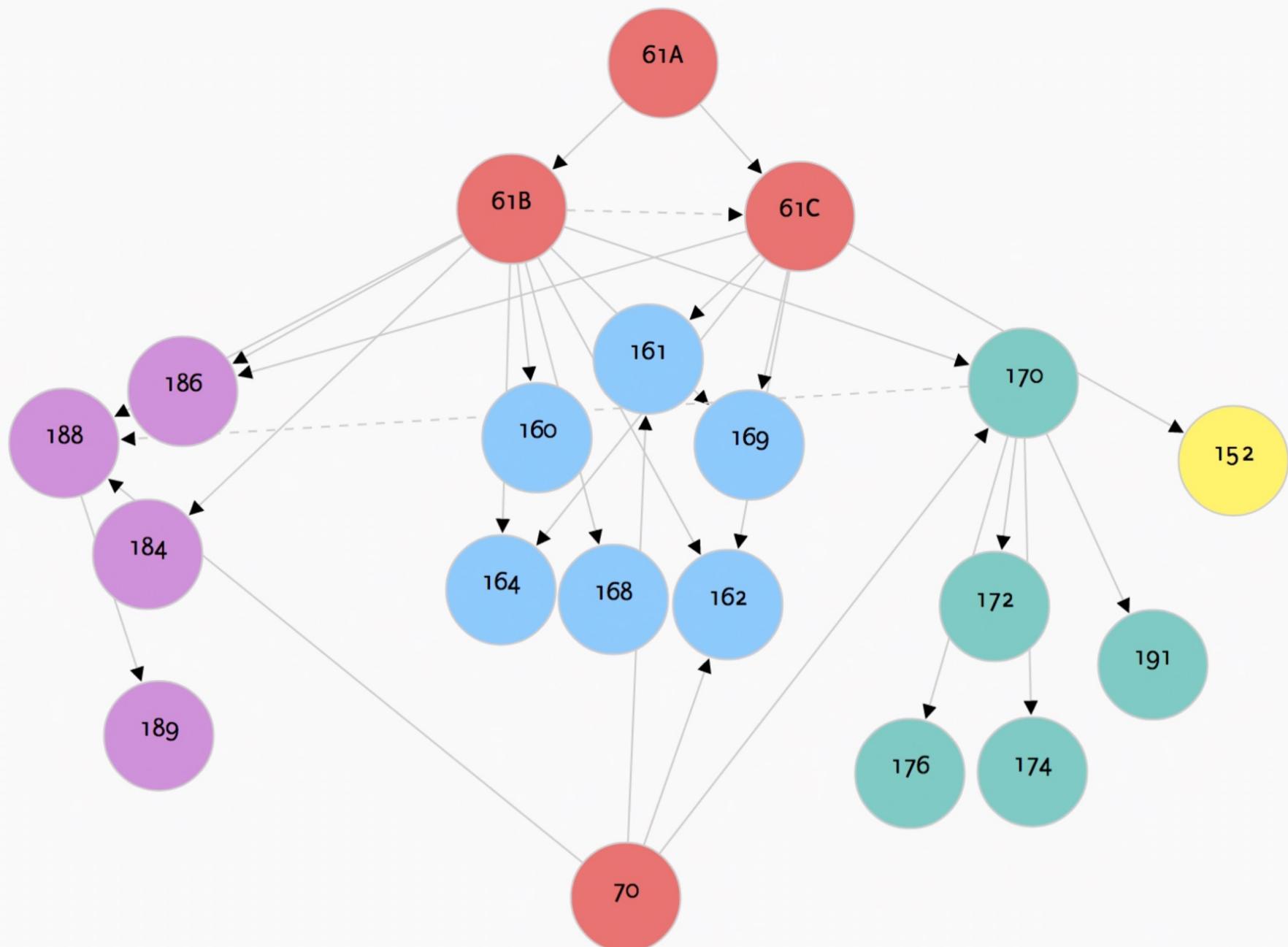


Renren Social Network: Chen Wen Xin

Examples of Directed Graphs

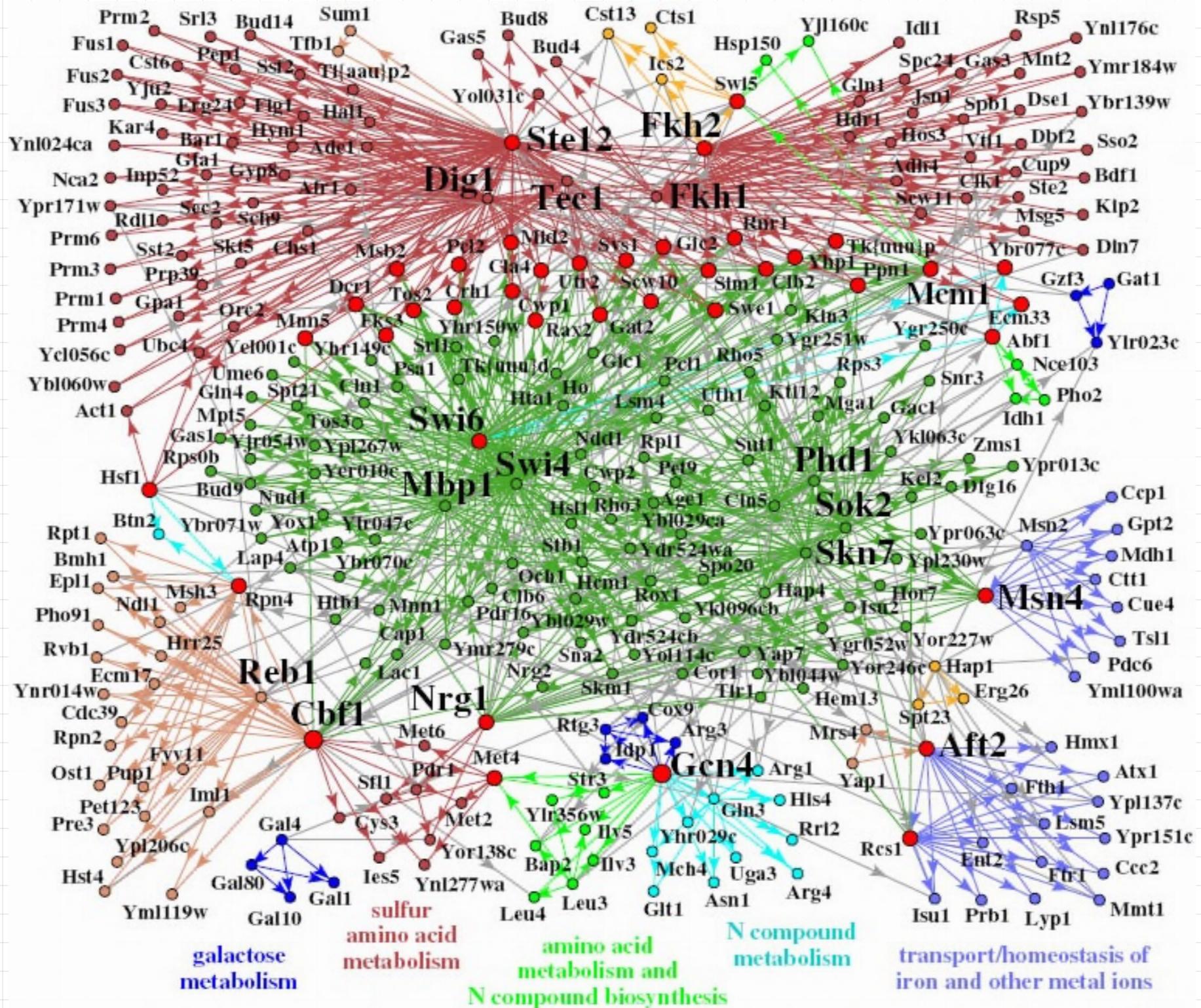
- internet (web links)
- course prerequisites
- biological networks
- social networks ("recognizes")

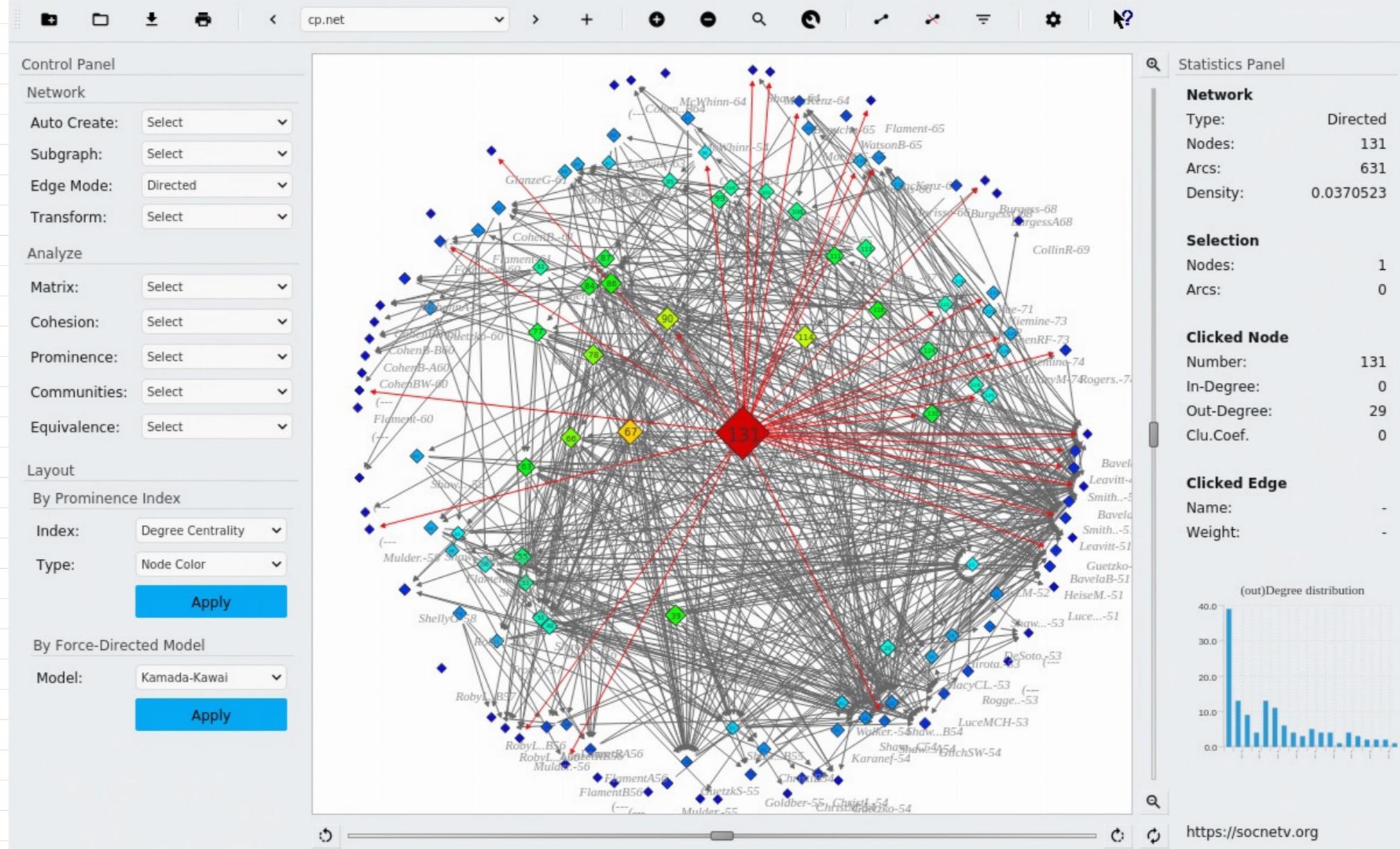
⋮



Required →

Recommended ➤





Some Terminology

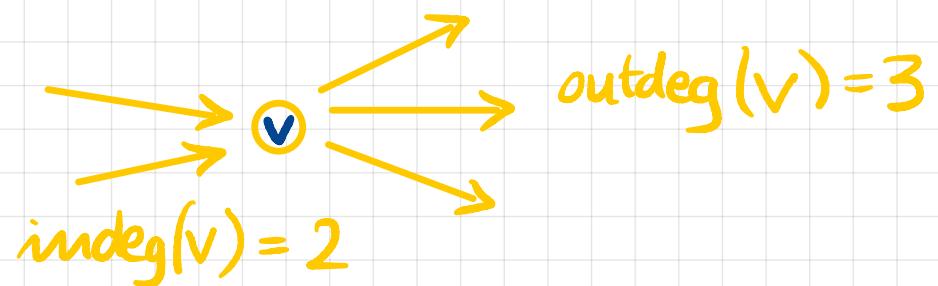
$e = \{u, v\}$ edge

u, v are adjacent or neighbors
e is incident on u & v

degree of v = number of neighbors

If v has degree 0 it is isolated

For directed graphs :



Q: What is the sum of all vertex degrees in G ?

A: $\sum_{v \in V} \deg(v) = 2|E|$

More Terminology

A (simple) path is a sequence of edges

$$\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \dots, \{v_{k-1}, v_k\}$$

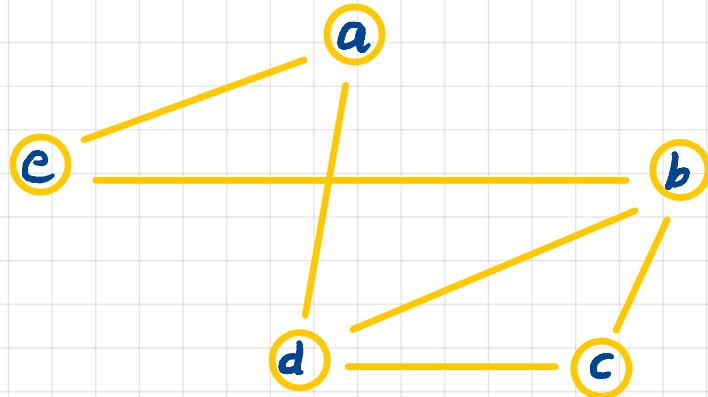
s.t. all the v_i are distinct (except possibly $v_k = v_1$)

[Equivalently: $v_1 - v_2 - v_3 - \dots - v_k$]

A cycle is a path where $v_1 = v_k$

A walk is any sequence of edges as above (repeated vertices/edges allowed)

A tour is a walk where $v_1 = v_k$



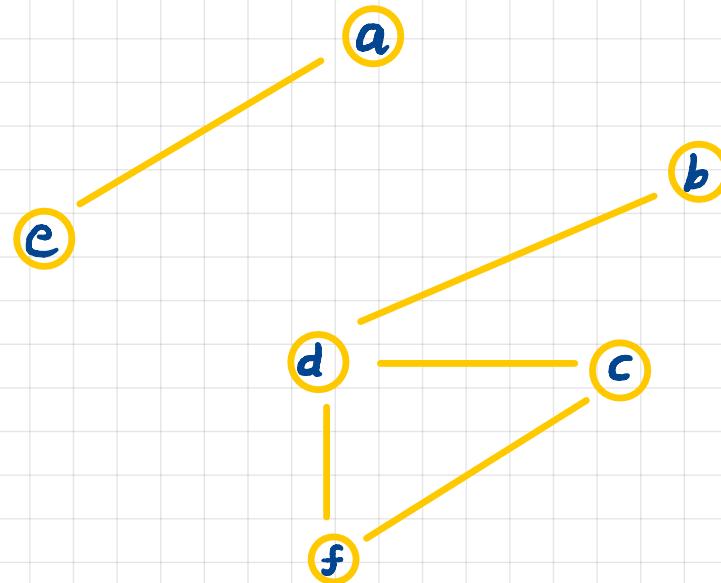
E.g.

path: $e - a - d - c$

cycle: $d - c - b - d$

A undirected graph is connected if there is a path from any vertex to any other vertex

Any graph can be decomposed into connected components



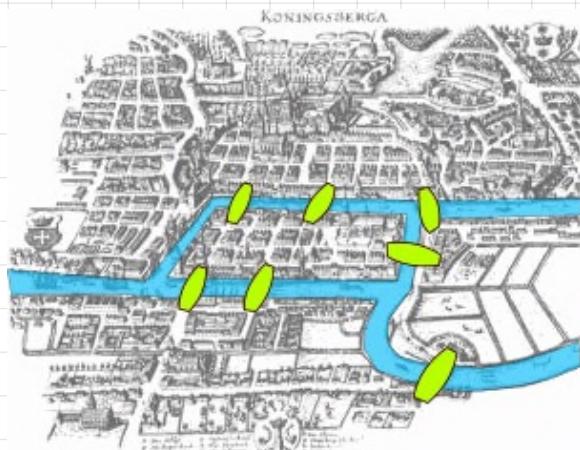
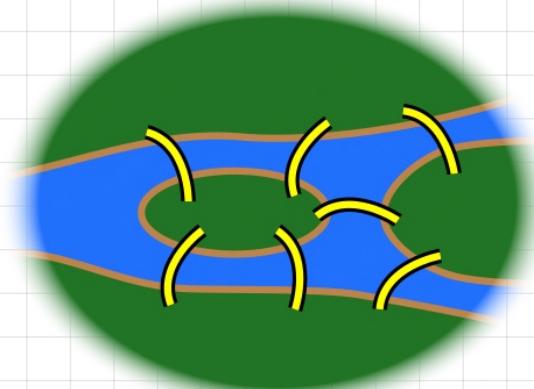
A directed graph is strongly connected if \exists (directed) path from every vertex to every other vertex

Graph Theory : Topics

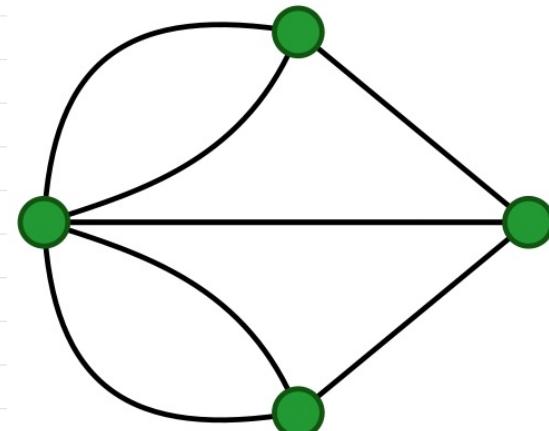
- Eulerian tours
- Trees & complete graphs
- Planar graphs
- Connectivity & hypercubes

} next
lecture

Euler : Bridges of Königsberg (1736)



Can we cross all
7 bridges once
& end up where
we started ?

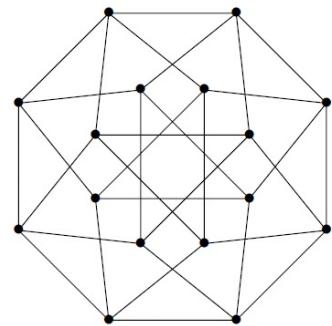
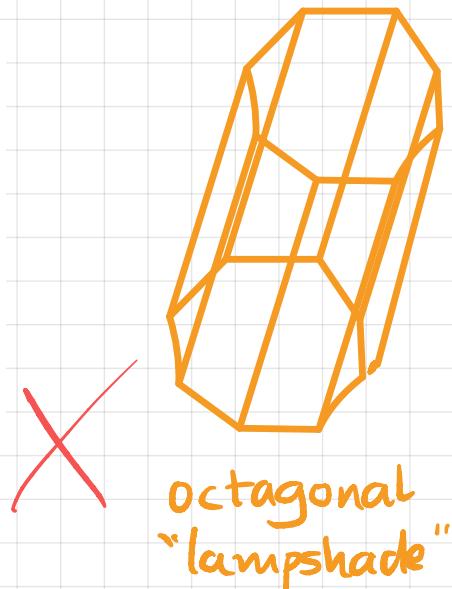


(multi)graph

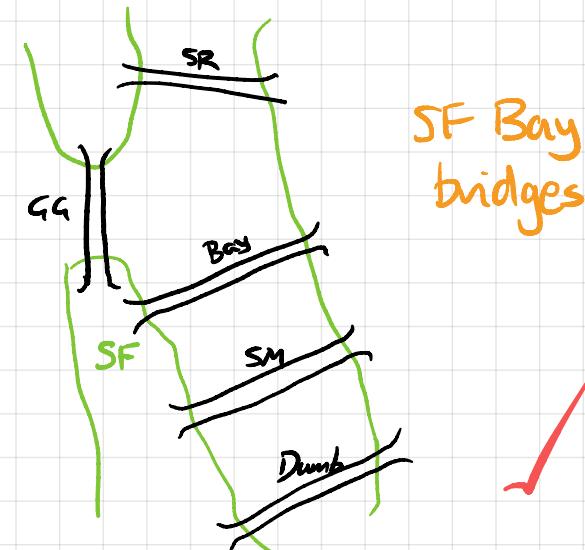
Defn : An Eulerian tour of a graph is a ^{tour} {walk} that traverses each edge exactly once and ends up at the starting vertex

Theorem [Euler] : A connected graph has an Eulerian tour \Leftrightarrow the degree of every vertex is even

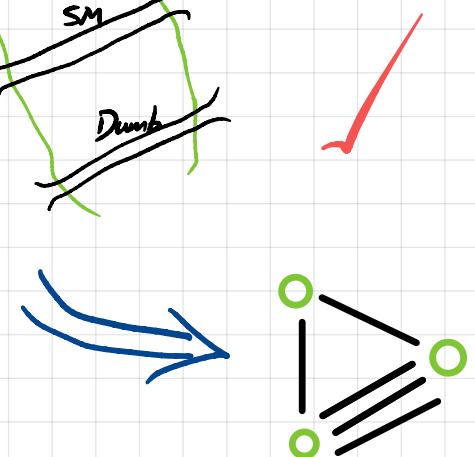
Examples



octagonal
"lampshade"



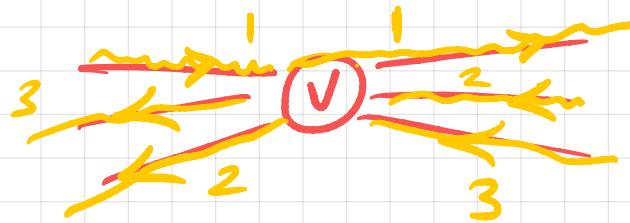
SF Bay
bridges



Theorem [Euler] : A connected graph has an Eulerian tour \Leftrightarrow the degree of every vertex is even

Proof : \Rightarrow In any Eulerian tour, entries to & exits from a vertex occur in pairs, using different edges :

E.g.



\Rightarrow can pair up incoming & outgoing edges at v on the tour

\Rightarrow # of edges inc. at v is even

\Leftarrow Assuming G is connected & all vertex degrees are even — give an algorithm for constructing an E. tour

subroutine FindTour(G, s)

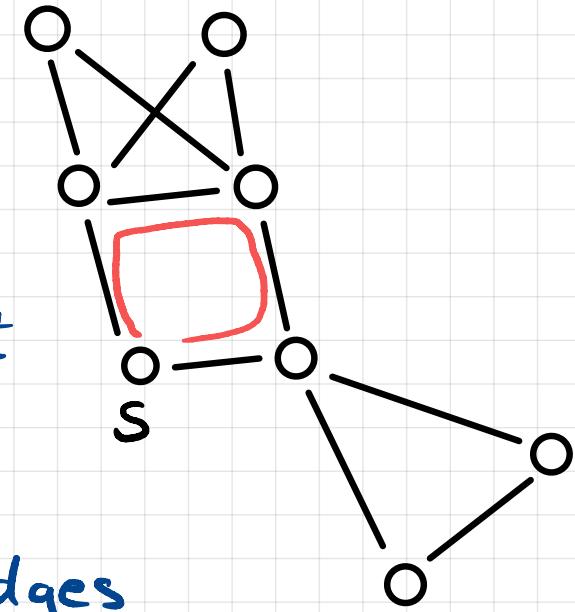
start at s

repeat

choose any untraversed edge incident
on current vertex & traverse it

until get stuck

return the tour formed by traversed edges

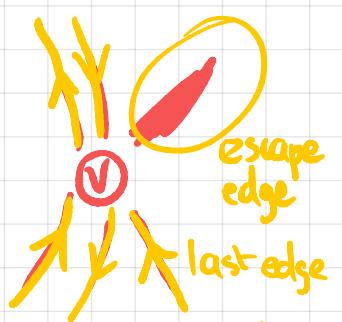
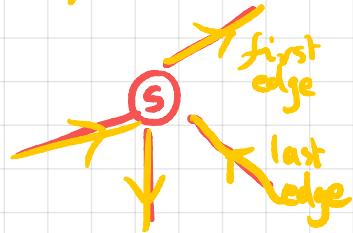


Claim: $\text{FindTour}(G, s)$ always gets stuck at s

Proof: For any vertex $v \neq s$, whenever our tour arrives at v it has used up an odd # of v 's edges.

Hence there is always an "escape" edge available at v

Whenever tour arrives at s , it has used up an even no. of s 's edges — so it can get stuck at s . Since must get stuck eventually, this must be at s \square



Euler(G, s)

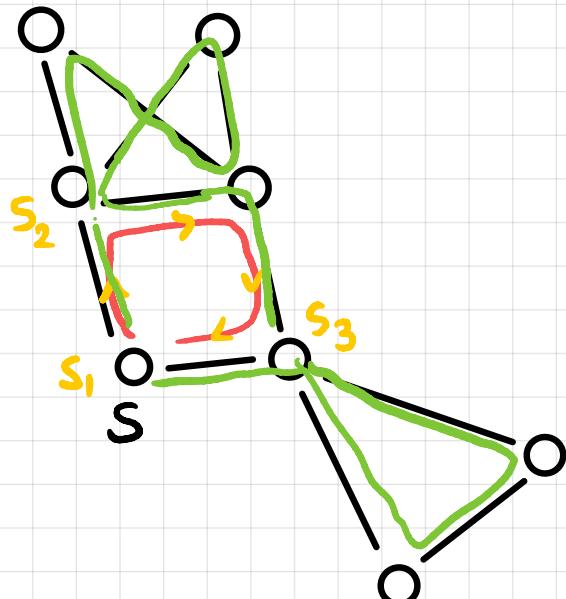
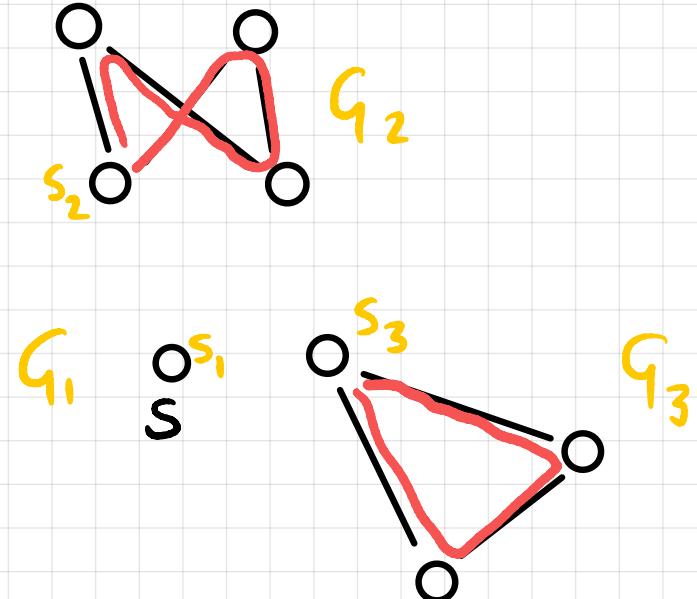
$T = \text{FindTour}(G, s)$

remove edges of T from G

let $\{G_1, \dots, G_k\}$ be the connected components

of the remaining graph, and s_i the first vertex of G_i visited by T

output ($\text{Splice}(T, \text{Euler}(G_1, s_1), \dots, \text{Euler}(G_k, s_k))$)



Theorem : For any connected G with even degrees, $\text{Euler}(G, s)$ outputs an Euler tour starting & ending at s

Proof : (Strong) induction on # edges m in G

Base : $m=0$ ✓ (nothing to prove)

Ind. step : Assume true for any graph with $\leq m$ edges.

Sp. G has $m+1$ edges.

Removing $T = \text{FindTour}(G, s)$ from G leaves G' with connected components G_1, \dots, G_k , all having even degrees (because T has even degrees !)

By strong induction hypothesis, $\text{Euler}(G_i, s_i)$ finds an E. tour in each G_i .

Hence $\text{splice}(\dots)$ returns an E. tour in G

□

Eulerian Tours – Wrap-Up

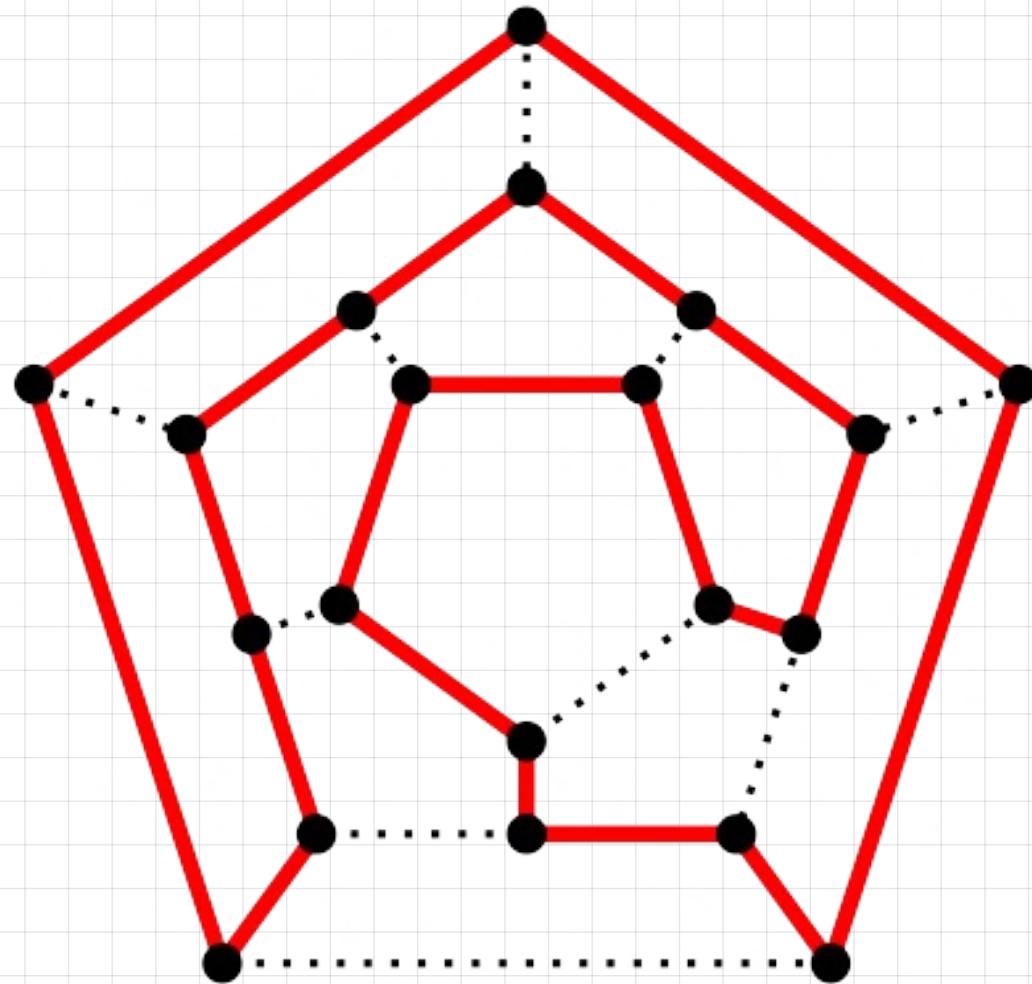
1. Exercise : modify proof of Euler's Thm. to prove :

Connected G has an Eulerian walk starting at s & ending at $t \iff$ all vertices of G except s & t have even degree

2. A Hamilton cycle in G is a cycle in G that visits every vertex exactly once

- no simple characterization

- NP-complete (related to Traveling Salesman)



Example of a graph with a Hamilton cycle
("dodecahedron" graph)

Graph Theory : Topics

- Eulerian tours
- Trees & complete graphs
- Planar graphs
- Connectivity & hypercubes

} next
lecture

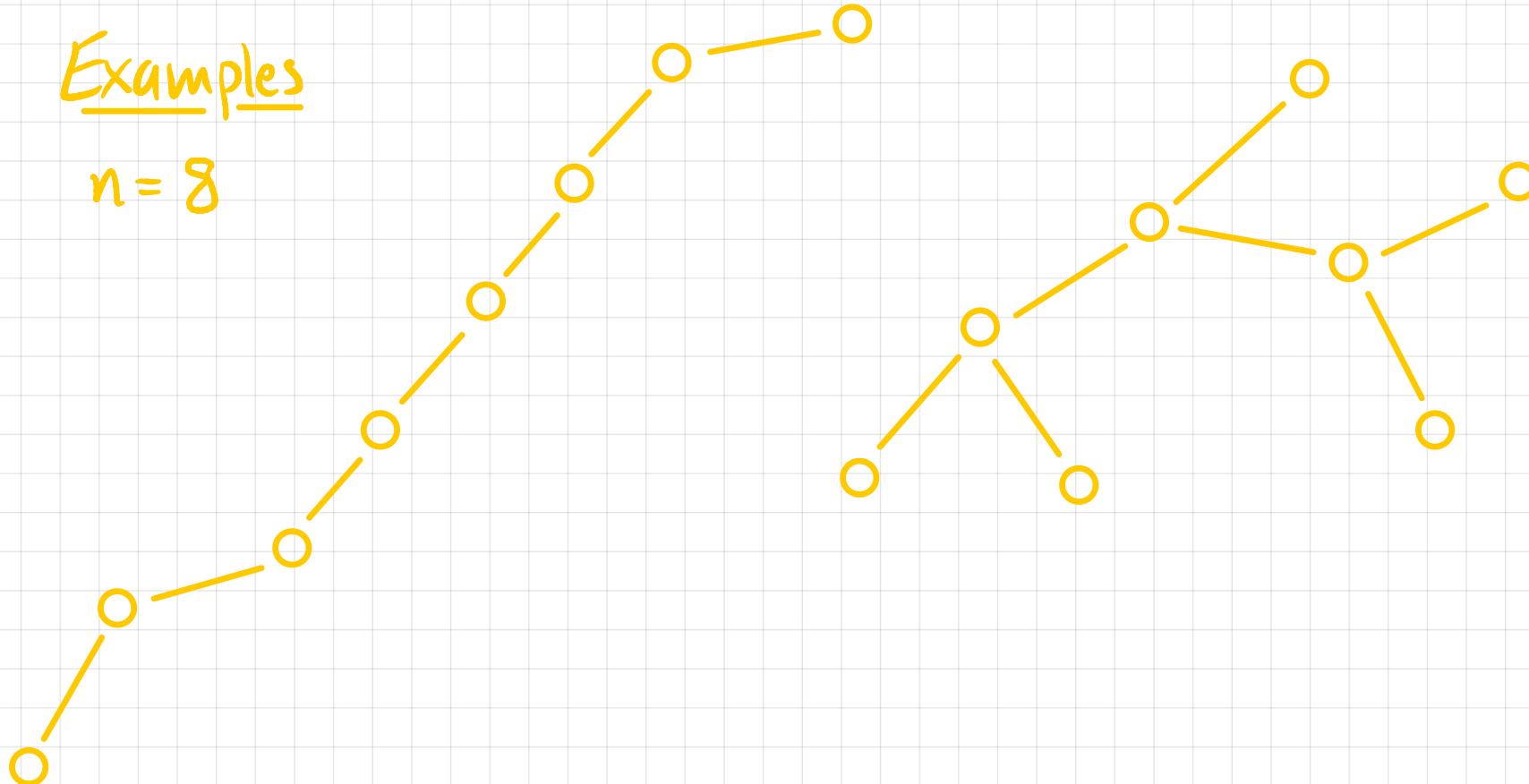
Trees

An undirected graph G with n vertices is a tree if either of the following equiv. conditions holds:

- (i) G is connected & has $n-1$ edges
- (ii) G is connected & has no cycles

Examples

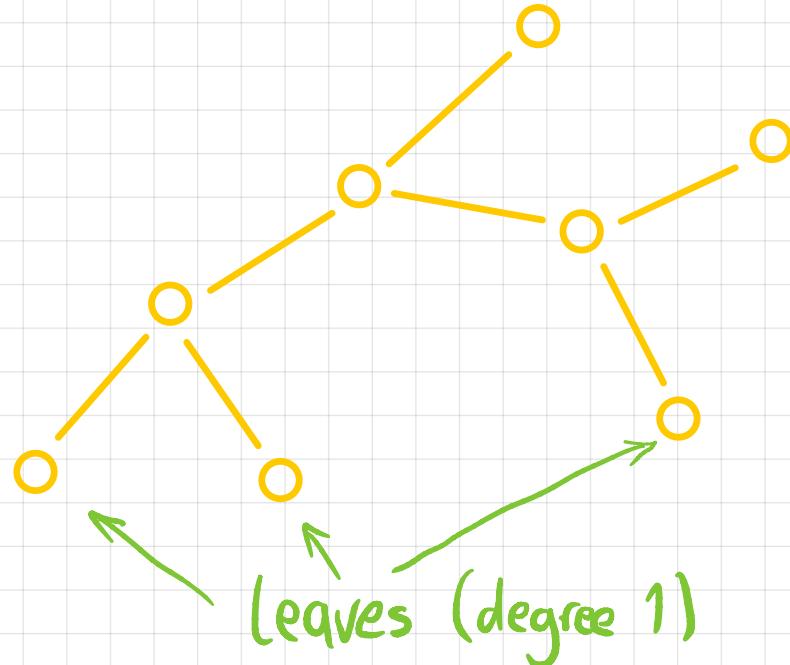
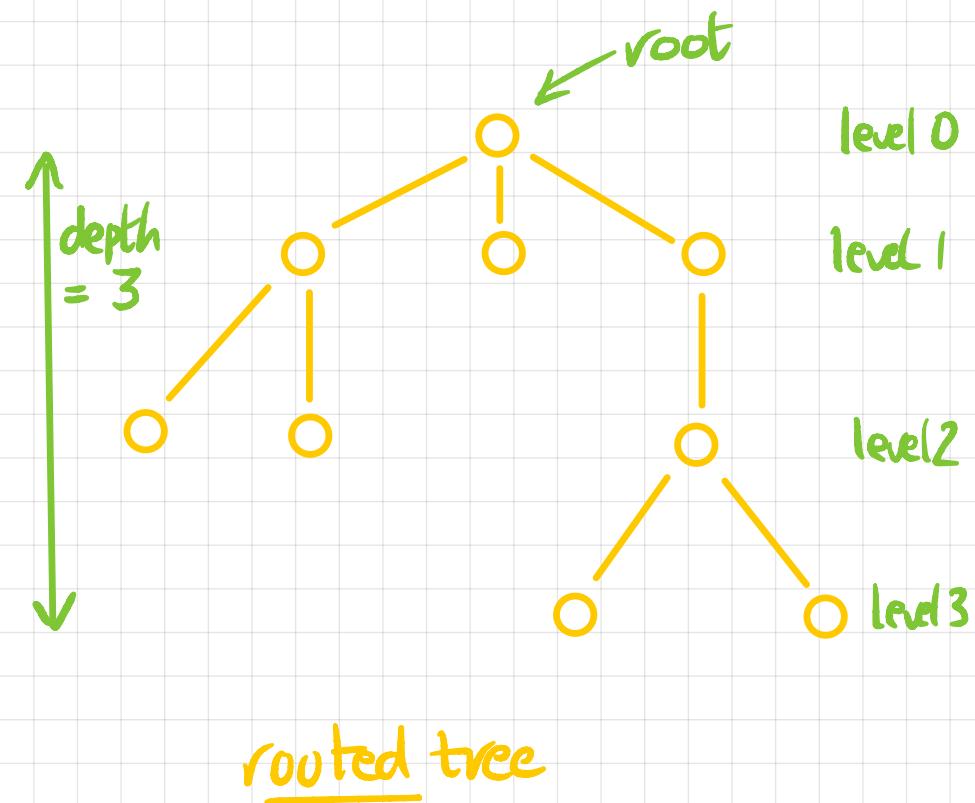
$$n=8$$



Trees show up in :

- data structures (BST, Red-Black trees, ...)
- phylogenetic trees (evolutionary biology, genealogy)
- epidemic models
- decision trees

:



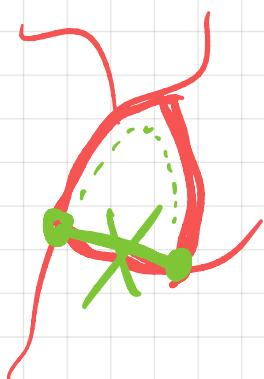
Theorem : G is connected & has $n-1$ edges $\iff G$ is connected & has no cycles

Proof : \Rightarrow Proof by contradiction .

Let G be connected & have $n-1$ edges.

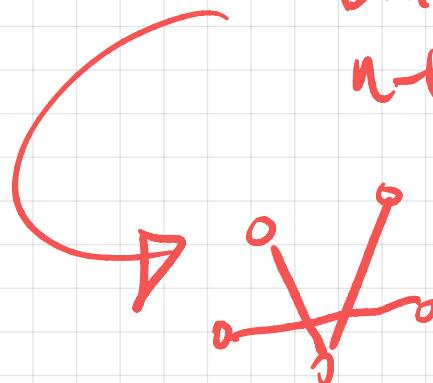
Sp. for ~~XX~~ that G contains a cycle

Then we can delete any edge of the cycle and G remains connected



So we get a graph with only $n-2$ edges that is connected.

But this is a ~~*~~ since we need at least $n-1$ edges to connect n vertices □



Each edge reduces # of components by at most 1
Start with n components & end with 1 component

Theorem : G is connected & has $n-1$ edges \iff G is connected & has no cycles

Proof : \Leftarrow Proof by induction on n .

Base case : $n=1$ \circ isolated vertex $n-1=0$ edges ✓

Inductive Step : Assume true for $1 \leq n \leq k$
Prove for $n = k+1$

Sp. G has $k+1$ vertices, connected, no cycles.

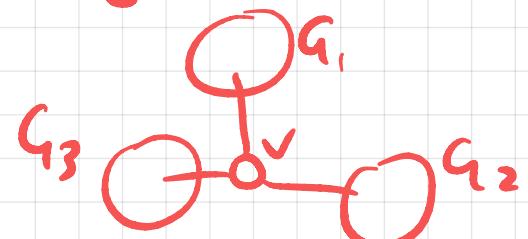
Remove one vertex v from $G \rightarrow$ new graph G' that
still has no cycles.

G' consists of connected components

G_1, G_2, \dots, G_l — say G_i has k_i vertices

By strong induction hypothesis, each G_i has $(k_i - 1)$ edges

So G has $\sum_{i=1}^l (k_i - 1) + l = \sum_{i=1}^l k_i = k$ □



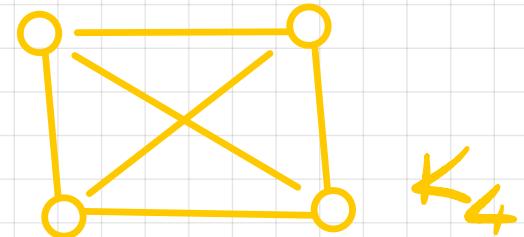
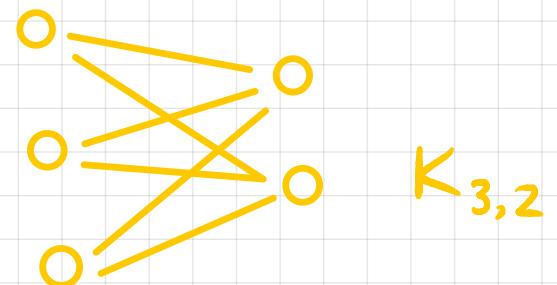
The Complete Graph

The complete graph on n vertices, K_n , is the graph that contains all possible edges (so # of edges is)

Notes:

1. K_n is unique but \exists many (n^{n-2}) trees on n vertices
2. K_n is maximally connected (need to remove at least $n-1$ edges to disconnect); trees are minimally connected (removing any edge disconnects)
3. Complete bipartite graph $K_{n,m}$:

of edges =



Summary

- Graphs: directed & undirected
- Paths, cycles, walks, tours
- Eulerian tours
- Trees, complete graphs

Next lecture

- Planar graphs
- Hypercubes & connectivity