

CS70 – SPRING 2026

LECTURE 6 : FEB. 5

Last Lecture

- Graphs: directed & undirected
- Paths, cycles, walks, tours
- Eulerian tours
- Trees, complete graphs

Today

- Planar graphs
- Hypercubes & connectivity

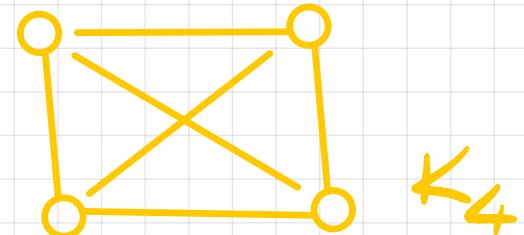
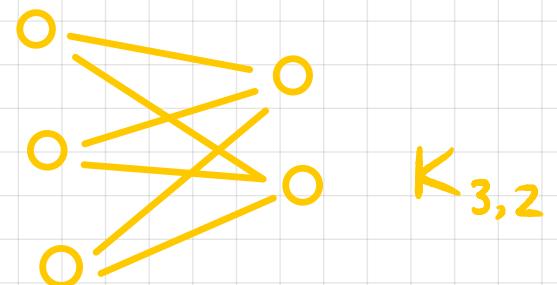
The Complete Graph

The complete graph on n vertices, K_n , is the graph that contains all possible edges (so # of edges is $\frac{n(n-1)}{2}$)

Notes:

1. K_n is unique but \exists many (n^{n-2}) trees on n vertices
2. K_n is maximally connected (need to remove at least $n-1$ edges to disconnect); trees are minimally connected (removing any edge disconnects)
3. Complete bipartite graph $K_{n,m}$:

$$\# \text{ of edges} = nm$$



Defn: A graph is planar if it can be drawn on the plane so that none of its edges cross

Note: A planar graph may have many different planar embeddings/ drawings

Q: Why planar graphs?

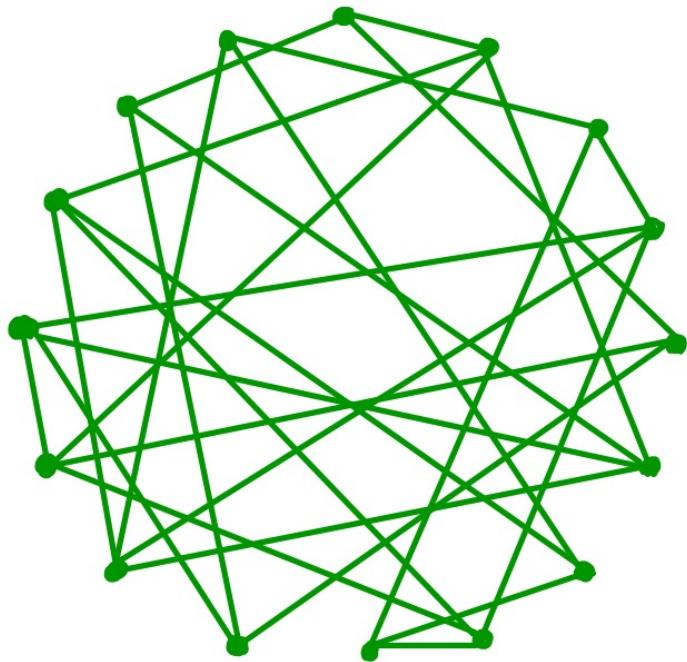
A: - Easy to visualize
- Efficient algorithms
- Nice properties (e.g., colorable with 4 colors)

Appel/Haken 4 Color Theorem 1976)

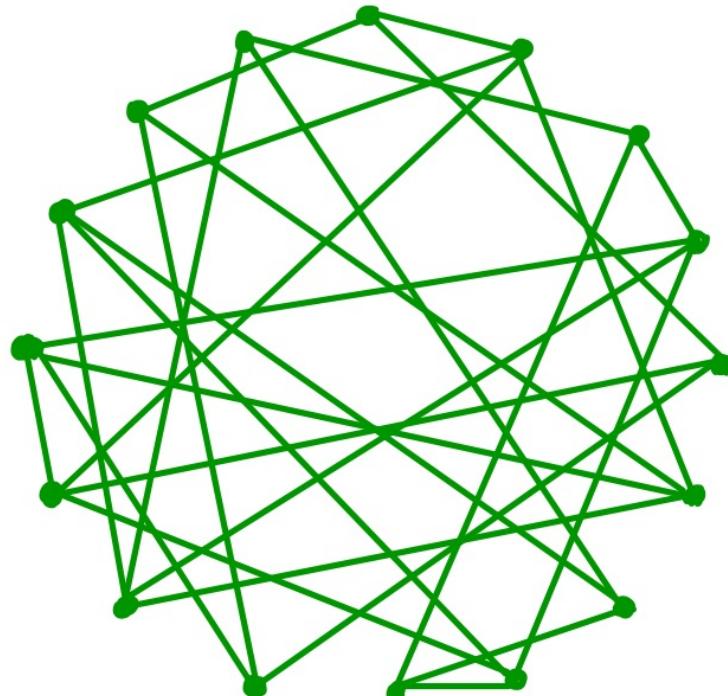
.

.

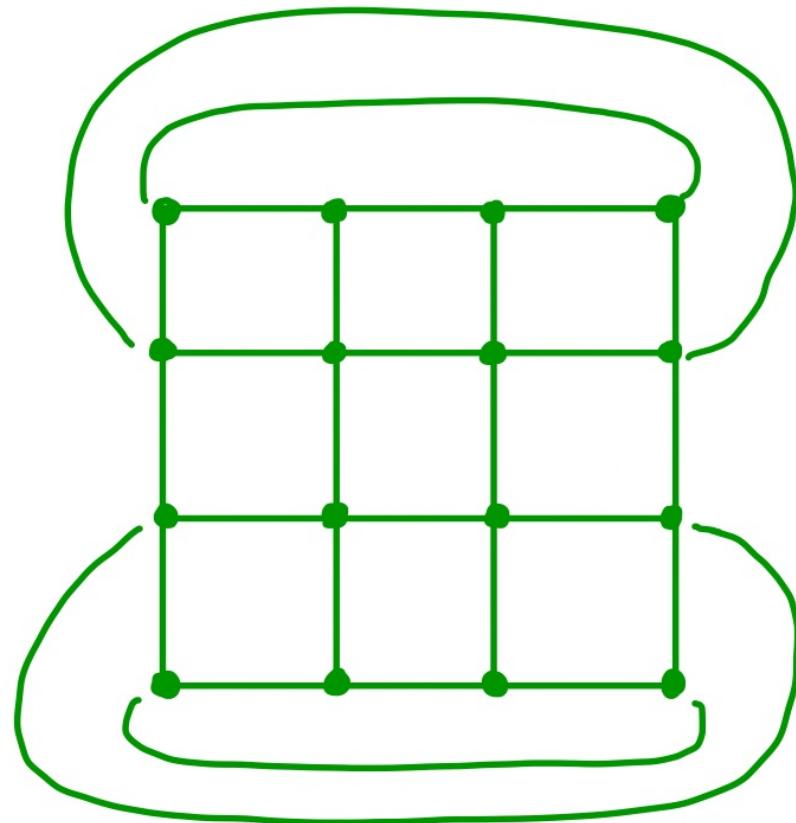
.



Ex: Is this graph planar ?

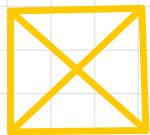


Ex: Is this graph planar ?



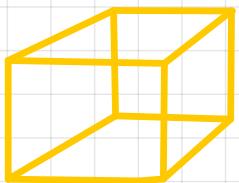
Move Examples

K_4



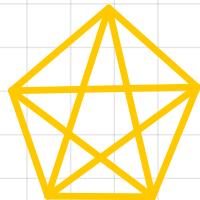
$$\left. \begin{array}{l} f = 4 \\ e = 6 \\ v = 4 \end{array} \right\} v - e + f = 2$$

3-dim.
cube



$$\left. \begin{array}{l} f = 6 \\ e = 12 \\ v = 8 \end{array} \right\} v - e + f = 2$$

K_5



planar ?

$K_{3,3}$



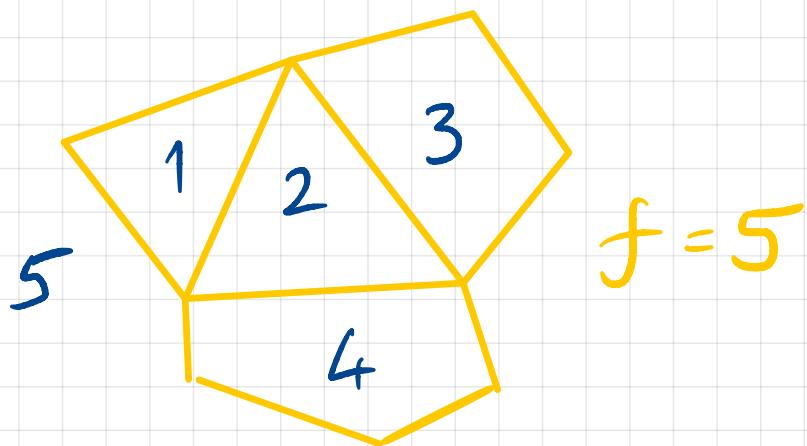
planar ?

("utility
graph")

Euler's Formula

Any planar drawing of a graph divides the plane into some number, f , of faces

E.g.



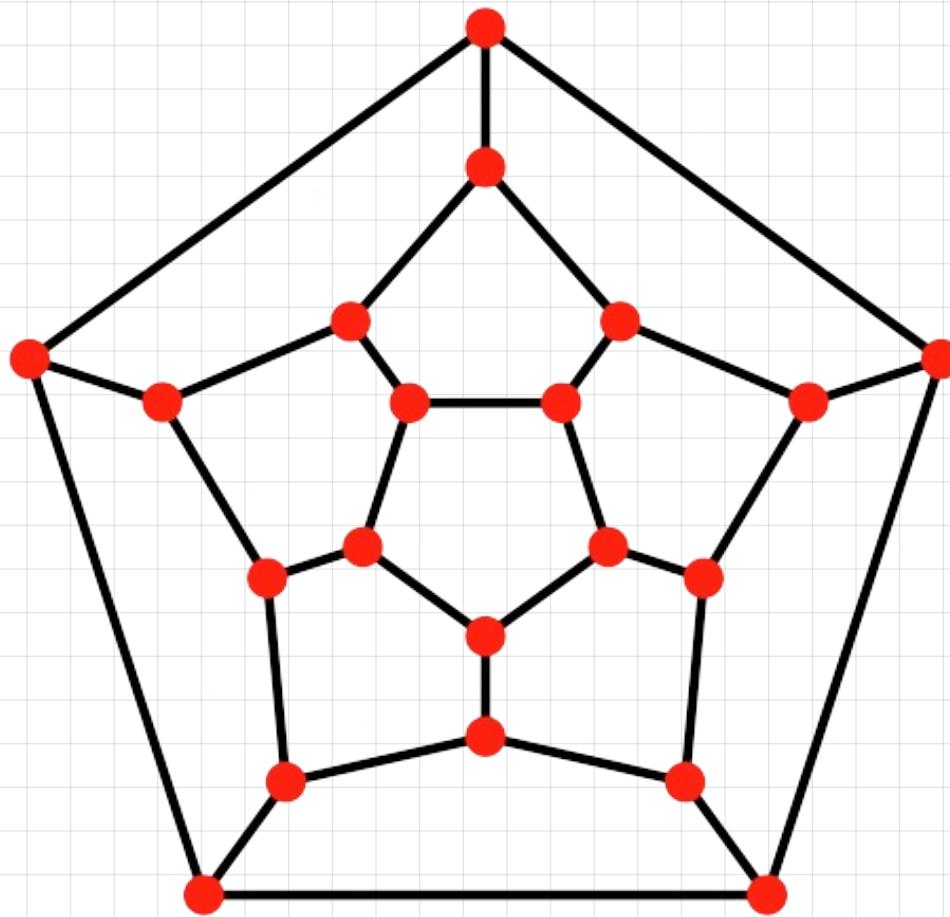
$$\left. \begin{array}{l} f=5 \\ v=9 \\ e=12 \end{array} \right\} \begin{array}{l} v-e+f \\ = 9-12+5 \\ = 2 \end{array}$$

Theorem [Euler's Formula]: Any planar drawing of a connected graph satisfies

$$v - e + f = 2$$

where v, e are the numbers of vertices & edges, resp.

Note : The Greeks "knew" this for polyhedral graphs, but couldn't prove it!



Dodecahedron graph

$$\left. \begin{array}{l} V = 20 \\ E = 30 \\ F = 12 \end{array} \right\} V - E + F = 2$$

Theorem [Euler's Formula]: Any planar drawing of a connected graph satisfies

$$V - E + F = 2$$

where V, E are the numbers of vertices & edges, resp.

Proof: Induction on #faces, F

Base Case: $F = 1$

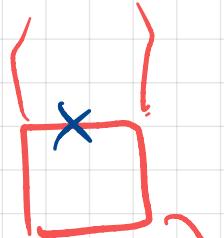
$\Rightarrow G$ is a tree ✓

$$E = V - 1$$

$$V - E + F = V - (V - 1) + 1 = 2$$

Inductive Step: Assume formula holds for any planar drawing with $F-1$ faces ($F \geq 2$)

Take any planar drawing of graph G with F faces, E edges, V vertices



→ new drawing with $F-1$ faces, $E-1$ edges, V vertices

By induction hypothesis: $V - (E - 1) + (F - 1) = 2$
But this implies $V - E + F = 2$, as required ✓

Applications of Euler's Formula

Formula says that # edges of planar graph is $e = v + f - 2$
How big can this be?

Corollary : Any connected planar graph with ≥ 2 edges satisfies

$$e \leq 3v - 6$$

Proof : Draw G in the plane : satisfies $e = v + f - 2$

For each face F_i , let $s_i = \text{number of sides of } F_i$

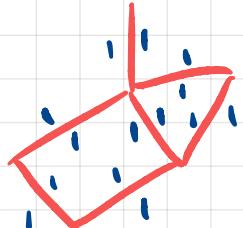
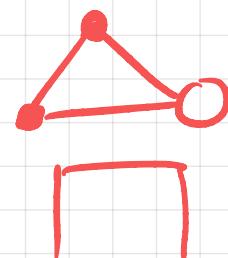
Then $\sum_{i=1}^f s_i = 2e$

Also, $s_i \geq 3 \quad \forall i \Rightarrow 2e \geq 3f$

$$e = v + f - 2 \leq v + \frac{2e}{3} - 2$$

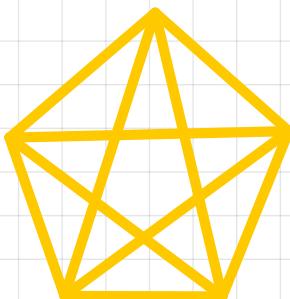
$$\Rightarrow e \leq 3v - 6$$

$$e \leq 2v - 4$$



Examples

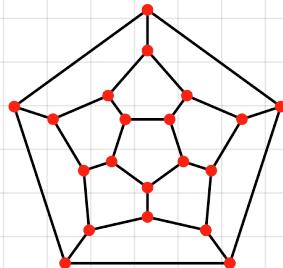
K_5



$$\begin{array}{l} v=5 \\ e=10 \end{array} \left. \begin{array}{l} ? \\ e \leq 3v-6 \end{array} \right. 10 \leq 15-9=6 \quad \times$$

NOT planar

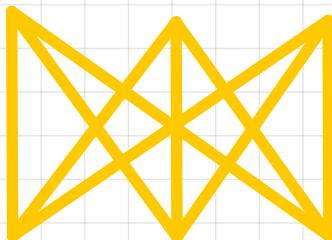
Dodecahedron



$$\begin{array}{l} v=20 \\ e=30 \end{array} \left. \begin{array}{l} ? \\ 30 \leq 60-6 \end{array} \right. \quad \checkmark$$

MAY BE planar

$K_{3,3}$



$$\begin{array}{l} v=6 \\ e=9 \end{array} \left. \begin{array}{l} ? \\ e \leq 3v-6 \end{array} \right. 9 \leq 18-6=12 \quad \checkmark$$

$\nrightarrow e \leq 2v-4$

$$9 \leq 12-4=8 \quad \times$$

MAY BE planar

NOT planar

Strengthening Euler's Criterion

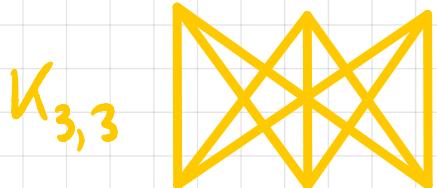
Euler's criterion says that if $e > 3v - 6$ then graph cannot be planar — so planar graphs can't have too many edges

For special types of graph we can do better

E.g. sp. G is bipartite — then G has no triangles, so every face has ≥ 4 sides!

Replacing $3f$ by $4f$ in previous argument:

$$e \leq 2v - 4$$



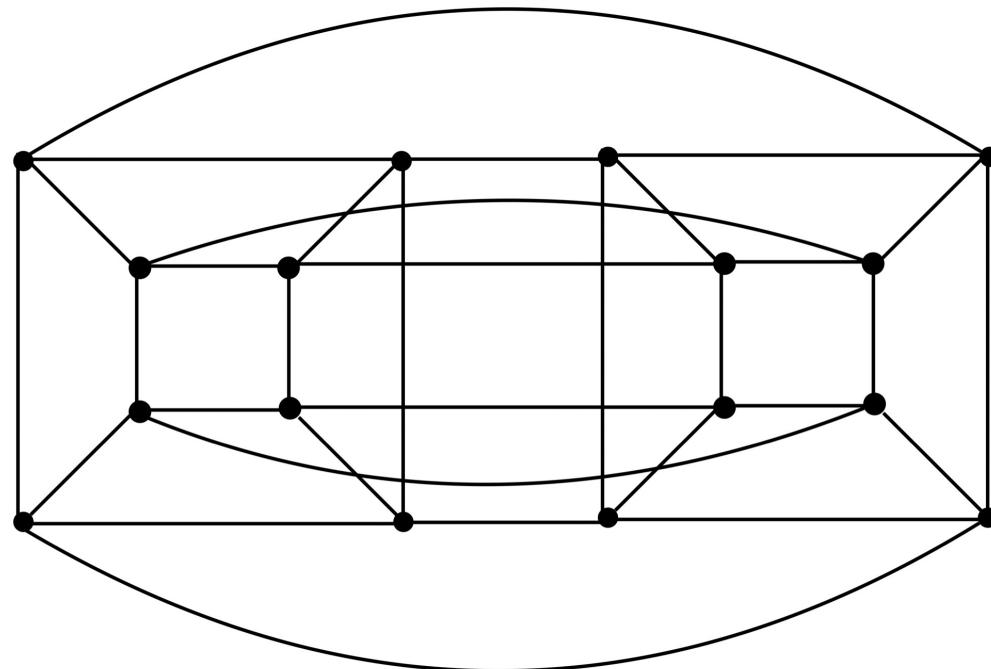
Kuratowski's Theorem

A graph G is planar $\iff G$ does not "contain" K_5 or $K_{3,3}$

"Proof": \Rightarrow already seen!

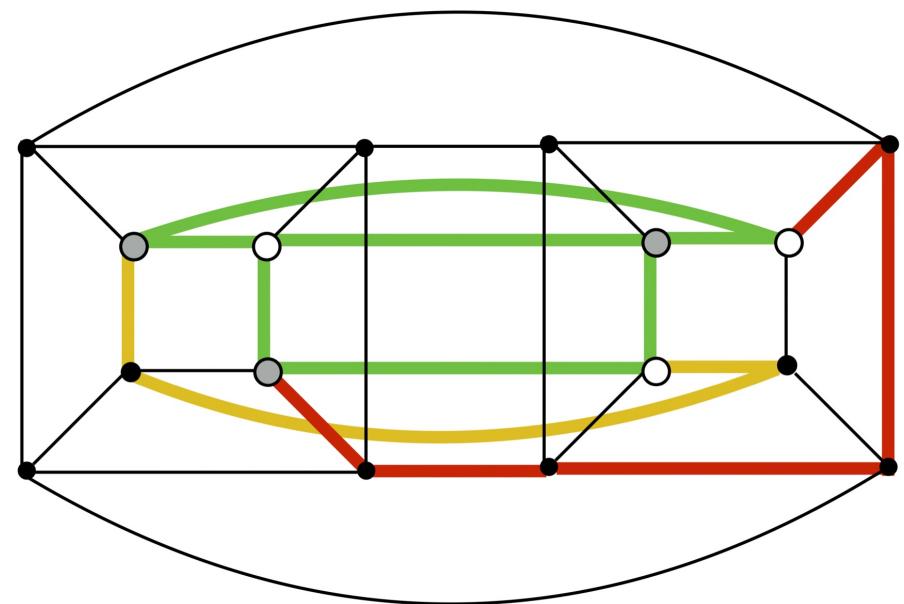
\Leftarrow tricky!

Note: " G contains H " means we can find a copy of H inside G , where vertices of H are distinct vertices of G and edges of H are disjoint paths in G



4-dimensional
hypercube

Copy of $K_{3,3}$ inside



Connectivity

Think of a graph G as a communication network

vertices \rightarrow nodes

edges \rightarrow links

All nodes can communicate $\rightarrow G$ must be connected

Links (edges) may fail !

1. G is a tree

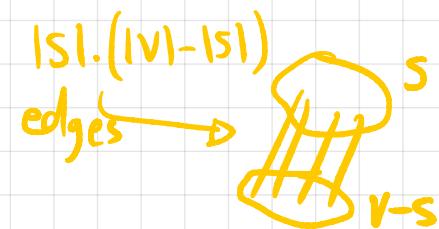
$$\# \text{edges} = n - 1$$

Very fragile : any edge failure disconnects !

2. G is a complete graph K_n

$$\# \text{edges} = \frac{n(n-1)}{2} \approx \frac{1}{2} n^2 !$$

robust : need $\gg n-1$ edge failures to disconnect



Hypercubes

H_n : n -dimensional hypercube

Vertices: $\{0,1\}^n$ ($\# \text{ vertices} = 2^n$)

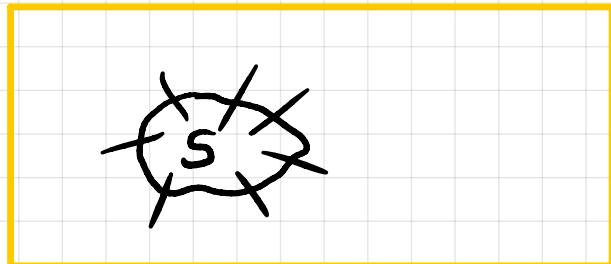
edges: connect vertices that differ in 1 bit

Note : H_n consists of 2 copies of H_{n-1} , with vertices matched up 1-1

H_n has $\left\{ \begin{array}{l} 2^n \text{ vertices} \\ \frac{n \cdot 2^n}{2} = n \cdot 2^{n-1} \text{ edges} \\ \text{all vertex degrees } n \\ \text{diameter } n \end{array} \right.$

N
$\frac{N \cdot \log_2 N}{2}$
$\log_2 N$
$\log_2 N$

Hypercubes are very well connected!



H_n

$S \subseteq V$: subset of vertices
 $|S| \leq \frac{|V|}{2}$

E_S : set of edges connecting
 S to $V-S$

Theorem: In H_n , for any set S as above, $|E_S| \geq |S|$

Note: Actually $|E_S| \geq \max \{n, |S|\}$ so v. small sets also OK.
(Ex.)

Theorem : In H_n , for any set S as above, $|E_S| \geq |S|$

Proof : Induction on n

Base case : $n = 1$. $|S| = 1$ $|E_S| = 1$ ✓ • — • ✓

Inductive step : Assume true for H_n - prove for H_{n+1}

Let $S \subseteq V(H_{n+1})$ with $|S| \leq 2^n$

Write $S = S_0 \cup S_1$ where S_0, S_1 are in 0, 1-subcubes

Assume w.l.o.g. $|S_0| \geq |S_1|$

Case (i) : $|S_0| \leq 2^{n-1}$ & $|S_1| \leq 2^{n-1}$

Then can apply ind. hyp. within each subcube

$$\Rightarrow |E_S| \geq |S_0| + |S_1| = |S| \quad \checkmark$$

Theorem: In H_n , for any set S as above, $|E_S| \geq |S|$

Proof: Induction on n

Base case: $n=1$. $|S|=1$ $|E_S|=1$ ✓

Inductive step: Assume true for H_n - prove for H_{n+1}

Let $S \subseteq V(H_{n+1})$ with $|S| \leq 2^n$

Write $S = S_0 \cup S_1$ where S_0, S_1 are in 0, 1-subcubes

Assume w.l.o.g. $|S_0| \geq |S_1|$

Case (ii): $|S_0| > 2^{n-1}$

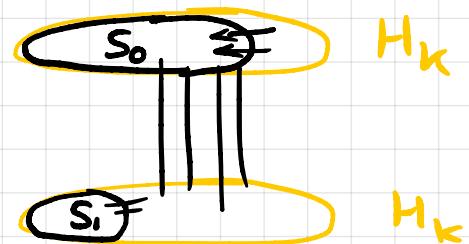
Then $|S_1| = |S| - |S_0| < 2^{n-1}$

So ind. hyp. in 1-subcube gives $|S_1|$ edges

And ind. hyp. in 0-subcube applied to $V_0 - S_0$ gives $|V_0| - |S_0|$ edges

Finally, also get $|S_0| - |S_1|$ crossing edges (between subcubes)

So $|E_S| \geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| = 2^n \geq |S|$ ✓



Summary

- Planar graphs
- Euler's Formula : $v - e + f = 2$
- Corollary : $e \leq 3v - 6$ (or $e \leq 2v - 4$ for bipartite graphs)
- Two key non-planar graphs : K_5 & $K_{3,3}$
(Kuratowski's Theorem)
- Hypercubes H_n : well connected, good network model

Next Lecture

- Modular arithmetic