

CS70 – SPRING 2026

LECTURE 9 : FEB. 17

Last Lecture

- Computing inverses : extended Euclid
- Chinese Remainder Theorem : solution to $\begin{cases} x \equiv a_1 \pmod{n_1} \\ \vdots \\ x \equiv a_k \pmod{n_k} \end{cases}$
- Fermat's Little Theorem : $a^{p-1} \equiv 1 \pmod{p} \quad \forall a \neq 0$
- Euler's Totient Theorem : $a^{\varphi(n)} \equiv 1 \pmod{n}$
 $\forall a \text{ s.t. } \gcd(a, n) = 1$

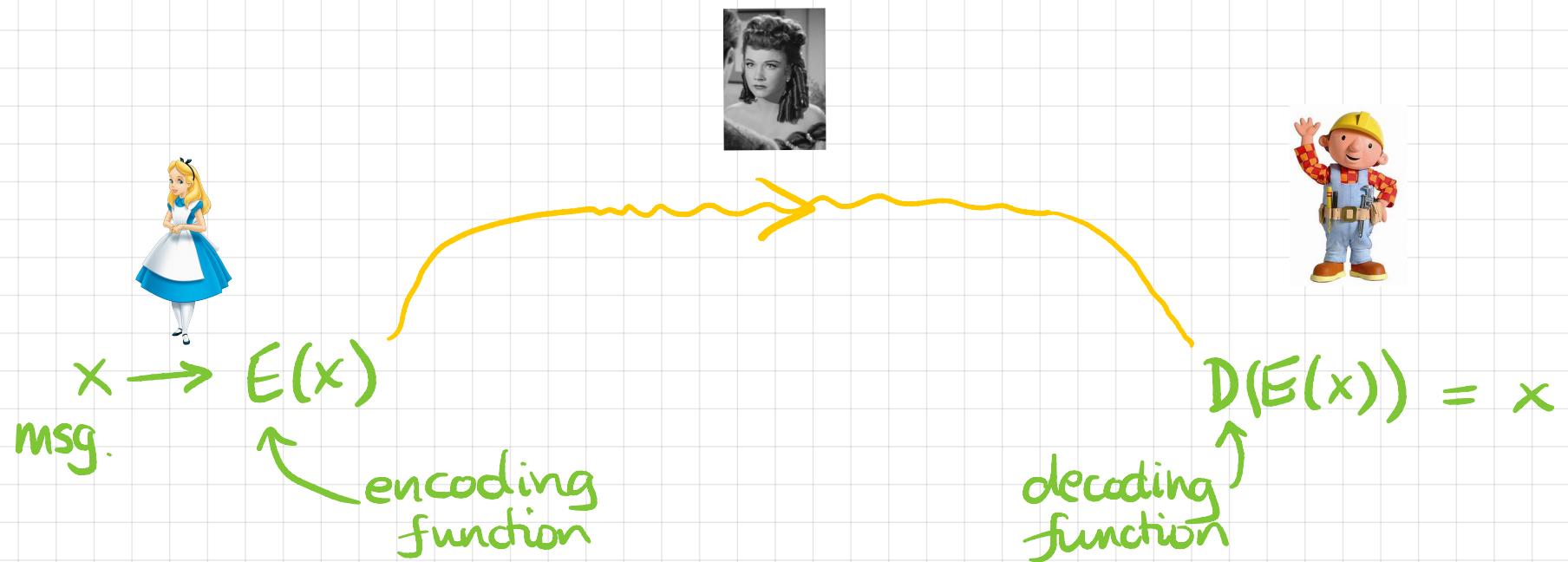
Today

- RSA Cryptosystem – an application of all the above

Cryptography

Alice wants to send a message to Bob securely (nobody else can read it)

Eve is a malicious eavesdropper who can monitor network traffic



Classical cryptography (pre-1970s)

Alice & Bob share in advance a secret (physical) "codebook" & use it for both encoding & decoding

Problems

- Eve might steal the codebook
- By observing a bunch of encrypted messages, Eve might break the code (cf Enigma in WWII)
- Alice & Bob need to meet/coordinate in advance

Public-key Cryptography (Rivest-Shamir-Adelman, 1978)

publishes a public key K
keeps a related private key P

uses K to encrypt msgs to Bob

decrypts messages using P

learns nothing from observing encrypted msgs

"Padlock" analogy: anyone can lock it (with K)
need special key (P) to unlock

Chooses 2 large primes p, q HUGE!
1024 bits $\approx 10^{308}$

Chooses integer e coprime to $(p-1)(q-1)$

Publishes public key (N, e) where $N = pq$

Retains private key $d = e^{-1} \pmod{(p-1)(q-1)}$

To send a message x (an integer mod N) to Bob:

- computes $E(x) = x^e \pmod{N}$
- sends $y = E(x)$ to Bob

Decrypts incoming message y via

$$D(y) = y^d \pmod{N}$$

Example: $p=5, q=17 \Rightarrow N=pq = 85$

$$(p-1)(q-1) = 64$$

Choose $e=5$ (coprime to 64) \Rightarrow Public key $K = (85, 5)$

And $d = e^{-1} \pmod{64} = 13$ Private key

Message $x = 11$ (+ve integer < 85)

$$E(x) = 11^5 \pmod{85} = \boxed{61} = y$$

Send to Bob

$$\begin{aligned} 11^2 &= 121 \equiv 36 \\ 11^4 &\equiv 36^2 = 1296 \equiv 21 \\ 11^5 &= 11^4 \times 11 \equiv 21 \times 11 \\ &= 231 \equiv 61 \end{aligned}$$

$$D(y) = 61^{13} \pmod{85} = \boxed{11}$$

$$\begin{aligned} 61^2 &= 3721 \equiv 66 \\ 61^4 &\equiv 66^2 = 4356 \equiv 21 \\ 61^8 &\equiv 21^2 = 441 \equiv 16 \\ 61^{13} &= 61^8 \times 61^4 \times 61 \\ &\equiv 16 \times 21 \times 61 \\ &= 20,496 \equiv 11 \end{aligned}$$

Important: Alice never knows p, q or d !
(or $(p-1)(q-1)$)

How do we know RSA works & is secure ?

1. Correctness : Prove that $D(E(x)) = x \quad \forall x \in \{0, 1, \dots, N-1\}$
2. Security : Argue that Eve learns nothing by observing $E(x), N, e$
3. Efficiency : Show that all computations by Alice & Bob can be done efficiently
 - choosing large primes
 - computing $e, d, E(x), D(y)$

1. Correctness : Prove that $D(E(x)) = x \quad \forall x \in \{0, 1, \dots, N-1\}$

Proof : Recall that $E(x) = x^e \pmod{N}$ and $D(x) = y^d \pmod{N}$
where $y = x^e$. Also $d = e^{-1} \pmod{(p-1)(q-1)}$.

So need to prove: $x^{ed} \equiv x \pmod{N}$

Equivalently: $x(x^{ed-1} - 1) \equiv 0 \pmod{N}$

So st.p. that $p \mid x(x^{ed-1} - 1)$ and $q \mid x(x^{ed-1} - 1)$ *

Note that $ed = k(p-1)(q-1) + 1$ for some $k \in \mathbb{Z}$ [because $d = e^{-1} \pmod{(p-1)(q-1)}$]

So * becomes: $p \mid x(x^{k(p-1)(q-1)} - 1)$ and same for q

Case (i) : $p \mid x \quad \checkmark \quad \hookrightarrow (x^{p-1})^{k(q-1)}$

Case (ii) : $p \nmid x$ Then $\gcd(x, p) = 1$.

So by FLT: $x^{p-1} \equiv 1 \pmod{p}$

$\Rightarrow x^{k(p-1)(q-1)} \equiv 1 \pmod{p} \Rightarrow x^{k(p-1)(q-1)} - 1 \equiv 0 \pmod{p}$

$\Rightarrow p \mid (x^{k(p-1)(q-1)} - 1) \quad \checkmark \quad \text{Same argument for } q \quad \square$

Alternative Proof using Euler's Theorem

Recall: $x^{\varphi(m)} \equiv 1 \pmod{m}$ $\forall x$ s.t. $\gcd(m, x) = 1$
where $\varphi(m)$ is the number of such x

When $m = N = pq$, we have $\varphi(N) = pq - p - q + 1$

$\begin{matrix} N = pq \text{ numbers total:} \\ \{0, 1, \dots, N-1\} \end{matrix}$

$$= (p-1)(q-1) \quad \text{WHY?}$$

The numbers that are not coprime with N are: $\{0, p, 2p, \dots, (q-1)p\} \cup \{0, q, 2q, \dots, (p-1)q\}$

So by Euler's Thm: $\varphi(N) = pq - (p+q-1)$ ✓

$$x^{ed} = x^{k(p-1)(q-1)+1} \equiv x \pmod{N} \quad \begin{matrix} \text{for } k \text{ of mem} \\ \forall x \text{ s.t. } \gcd(x, N) = 1 \end{matrix}$$

[And for the few special x with $\gcd(x, N) \neq 1$, we have $p|x$ or $q|x$ and can argue as before]

2. Security : Argue that Eve learns nothing by observing $E(x)$, N , e

How could Eve try to learn x from $E(x) = x^e \pmod{N}$?

(i) Try guessing x

Note : \exists unique x s.t. $E(x) = y$ so Eve can check

Problem : $2^{1024} \approx 10^{308}$ possibilities for x

(ii) Try to figure out the factors p, q - then she could compute $d = e^{-1} \pmod{(p-1)(q-1)}$ and decrypt $x = yd \pmod{N}$

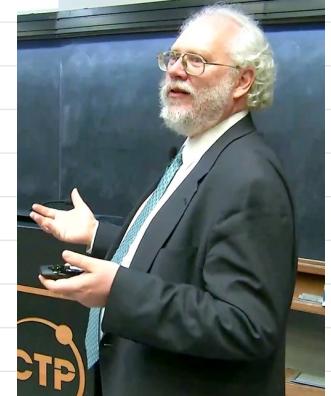
Problem : factoring large integers is very hard

Note : Computing $(p-1)(q-1)$ is equivalent to factoring N since $(p-1)(q-1) = N - p - q + 1$

(iii) Try to solve the equation $x^e \equiv y \pmod{N}$ for x

Problem : Equivalent to the discrete log problem, which in turn is very hard

Caveat : A quantum computer can (in theory) efficiently factorize large numbers (Shor's Algorithm)



→ can break RSA (and other similar public key cryptosystems)

⇒ New field of "post-quantum cryptography"

3. Efficiency: Show that all computations by Alice & Bob can be done efficiently

(i) computing $e, d, E(x), D(y)$

e : anything coprime to $(p-1)(q-1)$ - often $2^b + 1$ (prime)*

$d = e^{-1} \pmod{(p-1)(q-1)}$ - use extended Euclid

$$\left. \begin{array}{l} E(x) = x^e \pmod{N} \\ D(y) = y^d \pmod{N} \end{array} \right\}$$

use repeated squaring: if e, d have ≤ 1024 bits then only need $\sim 2k$ multiplications

Multiplications mod N take $\sim (1024)^2 \sim 1m$ bit ops.

* Still need to check that $\gcd((p-1)(q-1), e) = 1$.
This fails only if $e \mid (p-1)$ or $e \mid (q-1)$, which is very unlikely.
If it happens, just try a different e

3. Efficiency: Show that all computations by Alice & Bob can be done efficiently

(ii) Choosing large primes (say, 1024 bits)

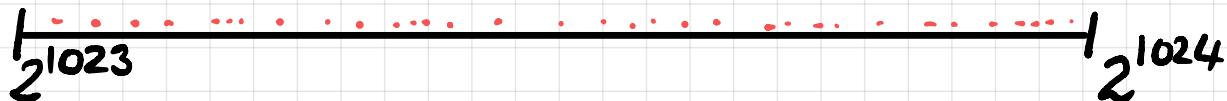
- pick a random 1024-bit number n
- test if n is prime
- if not, try again

Prime Number Theorem:

$$\frac{\text{# of primes} < m}{m} \geq \frac{1}{\ln m}$$

"On average, 1 in every $\ln m$ numbers is prime"

Since $\ln 2^{1024} \approx 710$, at least 1 in 710 1024-bit nos. is prime!



\Rightarrow expect ≈ 710 attempts to find a prime

Primality Testing : How do we test if a large number n is prime ?

Recall : Factoring n is very hard

But : Testing if n is prime is (fairly) easy !

Bad Primality Test :

for $2 \leq a \leq \sqrt{n}$

if $a|n$ then output "n is not prime"
output "n is prime"

Running time : $O(\sqrt{n}) \approx 10^{154}$ if $n \approx 10^{308}$

Note : Trying random a (as in Fermat Test on next slide) doesn't help because n may have only very few factors a !

Much Better : Fermat Test

pick $a \in \{2, 3, \dots, n-1\}$ at random

if $\gcd(a, n) \neq 1$ output "n is not prime"

if $a^{n-1} \not\equiv 1 \pmod{n}$ output "n is not prime"

else output "n is prime"

If n is prime, output is always correct

If n is not prime, test may output wrong answer...

This happens if the random a we pick is not a witness : i.e., $\gcd(a, n) = 1$

and $a^{n-1} \equiv 1 \pmod{n}$

even though n is not prime

Good News : For almost all inputs n , at least half of the $a \in \{2, 3, \dots, n-1\}$ are witnesses !

This means the Fermat Test is correct with probability at least $1/2$

Try 100 different a 's \Rightarrow Test is correct with prob.

$$\geq 1 - \frac{1}{2^{100}} \quad !$$

Carmichael Numbers : The inputs n that fail the Fermat Test are called Carmichael Numbers : they have no witnesses a .

First few CNs : 561, 1105, 1729, ...

Only ~ 1 in 2^{14} CNs up to 10^{21}

Miller-Rabin
Solovay-Strassen
:

Fact : There are efficient algorithms* (extensions of Fermat Test) that also work for CNs !