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1. Pledge.

Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and
respect for others.

In particular, I acknowledge that:

• I alone am taking this exam. Other than with the instructor and GSIs, I will not have any verbal,
written, or electronic communication about the exam with anyone else while I am taking the exam or
while others are taking the exam.

• I will not have any other browsers open while taking the exam.

• I will not refer to any books, notes, or online sources of information while taking the exam, other than
what the instructor has allowed.

• I will not take screenshots, photos, or otherwise make copies of exam questions to share with others.

• I will make an effort to be polite to people from Stanford. [This is optional.]

Signed:

2. Long Ago.

1. ∀x,y ∈ N,x− y ≤ min(x,y).
Answer: False. x = 5,y = 1.

2. (¬(∃x ∈ S,(¬P(x)∨Q(x))))≡ (∀x ∈ S,(P(x)∧ (¬Q(x))).
Answer: True. Application of DeMorgan’s theorem.

3. ∀p ∈ N,((∀n ∈ N,(n < 2∨n = p∨¬(n|p)) =⇒ (∀a ∈ N,ap −a = 0 (mod p)))).
Answer: True. This follows from Fermat’s theorem and is used to proved that RSA encryption/de-
cryption is reconstructs original message.

4. If x|y and x|z, then x|gcd(y,z).
Answer: True. Assume x > 0. If x|y and x|z, then x must be a common divisor of y and z, and
therefore divides any expression ax+ by for integers a and b. Moreover, gcd(y,z) = ax+ by by the
extended euclid’s algorithm, and therefore x|gcd(y,z).

5. Let A and B be finite sets, and let f : A → B and g : B → A be two functions such that

∀x ∈ B, f (g(x)) = x.

Fill in the blank with one of >,≥,<,≤,= or “Incomparable” in the statement

|A| |B|.

Choose the most specific answer that is always true.
Answer: ≥. This is true for any function. If |A| < |B|, then g maps at least two elements in B to the
same element in A, and a function f cannot map one element of A to different elements of B. It could
be a bijection where |A|= |B|, and it could not be a bijection so |A|> |B|.

6. For natural numbers k and n, any solution to xk = n must be an integer or irrational.
Answer: True. Consider reduced form: (a/b) where b ̸= 1. Since a and b have no common factors,
(ak/bk) also cannot be reduced if b ̸= 1. Thus, either b = 1 in which case the solution is an integer, or
there are no rational solutions.
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7. For a natural number n which is not a perfect square, then x3 = n has no rational solutions.
Answer: False. n could be a perfect cube.

8. For a natural number n which is not a perfect square, then x4 = n has no rational solutions.
Answer: True. Otherwise x2 would be a solution to the equation y2 = n which contradicts the assump-
tion that n is not a perfect square.

9. Consider job optimal and candidate optimal stable pairings, P and P′, in a stable matching instance,
consider a graph G where vertices consist of jobs and candidates and the pairs in P and P′ form edges.

(a) The resulting graph is simple.
Answer: False. The job optimal and candidate optimal pairings could be the same.

(b) If the graph consists of a single simple cycle, then there are at most two stable pairings.
Answer: False.
Consider that the job(candidate)-optimal pairing is one where every job (candidate) gets their
favorite partner and together these pairings form a simple cycle. Consider that the second favorite
candidate on each entities list gives a pairing.
We construct an example where an instance with n jobs and candidates. Let job i’s favorite be
candidate i, and candidate i’s favorite be job i+ 1 (mod n). Moreover, job i’s second favorite
candidate is i−2 (mod n) and candidate i’s second favorite candidate is job i+2 (mod n) since
i+2 (mod n) is a bijection and its inverse is i−2 (mod n).
Notice also that matching is stable since for job i and candidate job i prefers i− 2 (mod n) to
any candidate j ̸= i, and candidate i prefers job i+ 2 (mod n) to job i since its favorite is i+ 1
(mod 2).

10. If no one gets rejected in the job propose stable matching algorithm, then:

(a) Every job gets the first candidate on its list.
Answer: True. Each job proposed only to its first candidate when the algorithm terminated.

(b) The resulting pairing is both job optimal and candidate optimal.
Answer: False. The candidates preferences lists didn’t matter at all, so one can construct a
different pairing which is candidate optimal by selecting a different job to be each candidate’s
favorite.

11. There are always at least two distinct stable pairings in any stable matching instance; the job optimal
and the candidate optimal pairing.
Answer: False. The job optimal and candidate optimal pairings could be the same.

12. What is the number of edges in an n-vertex simple graph where every vertex has degree 2?
Answer: n. The sum of degrees is 2n.

13. A simple graph with n vertices and c connected components, where each has degree exactly 2, has
simple cycles.

Answer: c. Each component is a simple cycle.
14. Give as tight an upper bound as possible on the number of edges in a simple planar graph with n

vertices and c connected components.
Answer: 3n−6c. A connected component with v vertices can have at most 3v−6 edges and summing
over components gives 3n−6c.

15. How many paths of length d are there from the all 1’s vertex to the all 0’s vertex in a d-dimensional
hypercube?
Answer: d!. Every path of length d corresponds to a different ordering for flipping the bits (e.g.
11 → 10 → 00 flips bit 2 then 1, whereas 11 → 01 → 00 flips bit 1 then 2). There are d bits to flip, and
in turn d! different orders to flip them in.
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3. More and more pi.

Prove using induction that the sum of the interior angles of a convex polygon with n sides (and n vertices) is
(n−2)π . You may assume this is true for a triangle. (For a convex polygon, you may assume a line segment
between “non-adjacent” vertices u and v splits the polygon into two convex polygons each containing u and
v as vertices and are otherwise disjoint.)

Answer:

Base case: A polygon must have at least 3 sides so a triangle is our base case. Since the problem tells us we
can the statement is true for a triangle, this concludes the base case.
Inductive Hypothesis: Assume that the sum of the interior angles of a convex polygon with k sides is (k−2)π
for all 3 ≤ n ≤ k
Inductive Step: Let A be an arbitrary convex polygon with k+ 1 sides. We can take an three consecutive
vertices in A and connect the two non-adjacent vertices. We’ve essentially split A into a convex k-polygon
and a triangle. From our inductive hypothesis, we know that the sum of the interior angles of each will be
(k−2)π and π . Hence, the sum of the angles in A will be (k−2)π +π = ((k+1)−2)π proving our claim.

4. Three, what’s up with thee?

1. What are all the possible values of perfect squares modulo 3?
Answer: Since 02 ≡ 0 (mod 3),12 ≡ 1 (mod 3), and 22 ≡ 1 (mod 3), the perfect squares modulo 3
are 0 and 1.

2. Prove that any integer solution to the equation x2 + y2 = 3xy must have x ≡ y ≡ 0 (mod 3).
Answer: Taking the equation modulo 3, we have that x2 + y2 ≡ 0 (mod 3). x2 and y2 are either 0 or
1, so for their sum to be 0 (mod 3), we need them to be both 0. Thus, x ≡ y ≡ 0 (mod 3).

3. Prove that the equation x2 +y2 = 3xy has no solutions for positive integers x and y. (Hint: Suppose for
contradiction that there was a solution (a,b), with a and b positive integers, where a was as small as
possible. Find a positive integer solution (a′,b′) where a′ < a. You may find part (b) helpful.)
Answer: Suppose for contradiction that there was a solution (a,b), with a and b positive integers,
where a was as small as possible. (This is possible because we are considering positive integer so-
lutions). By part (b), we know that a and b are divisible by 3. Thus, a

3 and b
3 are positive integers,

and (a
3

)2
+

(
b
3

)2

=
1
9
(a2 +b2) =

1
9
(3ab) = 3

(a
3

)(b
3

)
,

so (a
3 ,

b
3) is a solution to our equation, contradicting the minimality of a. Thus, our initial assumption

was incorrect, and thus there are no positive integer solutions to our equation, as desired.

5. Polynomials.

1. Suppose P(x), Q(x) are distinct degree d polynomials. Then they have at most intersections.
Recall an intersection is a value x, where P(x) = Q(x). (Give the tightest upper bound possible.)
Answer: d. P(x)−Q(x) = 0 has at most d solutions.

2. Suppose polynomial P(x) is of degree 2d and Q(x) is of degree d. Then they have at most in-
tersections. Recall an intersection is a value x, where P(x) = Q(x). (Give the tightest upper bound
possible.)
Answer: 2d. P(x)−Q(x) = 0 has at most 2d solutions since it is a degree 2d polynomial.
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3. Give a polynomial with roots at r1, r2 that has value v at r3 modulo a prime p.
Answer: v(x− r1)(x− r2)(r3 − r1)

−1(r3 − r2)
−1 (mod p). This is just a special case of LaGrange

interpolation.

4. Every polynomial modulo a prime p is equivalent to a polynomial of degree at most . (Your
answer should be as small as possible.)
Answer: p−1. One can use the identity that ap = a (mod p) to reduce the degree of any term to less
than p.

5. The Berlekamp-Welch algorithm is used to send a message of size n = 3 sent over a noisy channel,
which possibly corrupts at most 2 packets.

(a) How many packets does one send in this situation? (Looking for a number.)
Answer: 7. Its n+2k.

(b) If exactly 2 errors occur somwhere in the set of packets used, how many possible polynomials
Q(x) (working modulo a prime p) could one possibly reconstruct?
Answer:

(7
2

)
. There are n+2k possible places for errors and there are exactly 2 places. Once the

positions of the 2 errors are specfied there is a unique error polynomial that corresponds to Q(x).
(c) If the error polynomial is E(x) = x2 +4x+2 (mod 7), where are the errors? (Give the x value(s)

for your answer.)
Answer: x = 1, and x = 2 since x2 +4x+2 = (x−1)(x−2) (mod 7).

6. Some counting.

1. Sylvia has found seven different NFTs (non-fungible tokens or digitally stamped pictures), and plans
to acquire them for herself by taking screenshots. She wishes to end up with ten screenshots in total.
She does not necessarily need a screenshot of every one.

(a) How many different sets of screenshots can she obtain? The order in which she takes the screen-
shots does not matter, and screenshots of the same NFT are indistinguishable.
Answer: By stars and bars, there are

(16
6

)
ways for Sylvia to get screenshots.

(b) (5 points) Sylvia decides she does not want to have more than four screenshots of the same NFT.
How many ways could she take screenshots now?
Answer: We subtract out by the situations where Sylvia ends up with at least four screenshots of
the same NFT. Here, we proceed with PIE. Let the NFTS be labeled from 1 to 7. The number of
situations where NFT i is screenshotted more than four times is

(11
6

)
by balls and bins, and there

are 7 choices for i. However, it is possible that two different NFTs are both screenshotted more
than four times. The number of situations where NFT i and j are both screenshotted, with i ̸= j,
is
(6

6

)
= 1 by balls and bins, and there are

(7
2

)
choices for i and j. Thus, by PIE, the number of

situations where Sylvia ends up with at least four screenshots of the same NFT is 7
(11

6

)
−
(7

2

)
.

Our final answer is thus
(

16
6

)
−7
(

11
6

)
+

(
7
2

)
.

2. (5 points) How many ways are there to express 10 as the sum of positive integers, where the order of
the sum matters? For example, 10 = 10, 10 = 4+ 3+ 3 and 10 = 3+ 3+ 4 count as three different
ways.
Answer: 512. We may model the problem with 10 balls, and in each of the 9 spots between the 10
balls, we may choose whether or not to place a divider. Then the number of balls between dividers (or
to the left of the leftmost divider/right of the rightmost divider) is a summand. There are 9 spots, and
each has 2 choices, for an answer of 29 = 512 .
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Alternatively, one can do stars and bars where each term has at least 1. This gives the formula ∑i=0
(9

i

)
,

which is 29 by the binomial theorem.

3. (5 points) How many positive factors of 1008 are also factors of 840? (Hint: Think of factors of
gcd(840,1008).)
Answer: A factor of both 1008 and 840 is a factor of their greatest common divisor, or 168. The
prime factorization of 168 = 23 · 31 · 71. Any factor of this must be in the form 2a · 3b · 7c, where
0 ≤ a ≤ 3,0 ≤ b ≤ 1, and 0 ≤ c ≤ 1. We have 4 choices for a, 2 choices for b, and 2 choices for c, for
a total of 16 factors.

7. Countability

1. The set of indices (or locations) of the 1’s in the decimal representation of π . (For example, π =
3.14159... so the set contains the indices 1 and 3 as there is a 1 at these locations in the decimal
representation of π .)
Answer: Countable. This is just a subset of the integers.

2. The set of subsets of a countably infinite set.
Answer: Uncountable. This is a bijection with the powerset of the integers.

3. The set of finite sized subsets of a countably infinite set.
Answer: Countable. One can enumerate the set of subsets of size at most k from the first k elements
of the countable set for increasing k. Any finite set has a maximal element m and thus will be output
when one is enumerating the subsets of the first m elements.

4. The set of all pairs of elements of two countably infinite sets.
Answer: Countable. One can use the spiral trick we used to show the rationals are countable. Alter-
natively, each countable set can be ordered. Then we can enumerate pairs by listing them in an order
corresponding to the sum of the indexes of the elements in their respective orderings. Every pair will
appear in the list at a finite place.

8. Computability

1. Given a program P, an input x, and a number n, does the program P halt on x in n steps?
Answer: Computable. Just run P on x for n steps.

2. Given a program P, an input x, and a number n, does the program P touch the memory location
numbered n?
Answer: Uncomputable. We can reduce the halting problem to this problem by modifying a program
P to only write to memory locations above 1, unless it exits, in which case it writes to location 0. The
old program halts if and only the new program writes to 0.

3. Given a program P, an input x, and a number n, does the program P touch more than n memory
locations?
Answer: Computable. Run the program and if it uses more then n units of memory, say yes, otherwise
if the n locations have been touched repeat a configuration and line number say no. The number of
states is finite, so if this state repeats if the program never repeats a configuration.

9. Probability: Based!

Given a probability space (Ω,P) and events A,B and C, fill in ≤, <, =, ≥, >, or “Incomparable” for
questions 1-7 such that the statement always holds. If no inequality always holds use “Incomparable.”
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1. P[A∪B∪C] P[A]+P[B]+P[C].
Answer: ≤. This is the union bound. The right hand side accounts for each sample point in the union
at least once.

2. P[A∩B∩C] P[A]P[B]P[C]

Answer: Incomparable. It could be less than the product if they are disjoint or more than the product
if they are the same events.

3. P[A∩B] P[A].
Answer: ≤. A∩B is a subset of A.

4. P[A|B] P[A].
Answer: Incomparable. If A = B, then P[A|B] = 1. If A and B are disjoint P[A|B] = 0

5. P[A∪B∪C] P[A]+P[B]+P[C]−P[A∩B]−P[A∩C]−P[A∩B].
Answer: Incomparable. This is the inclusion-exclusion equality but with P[B∩C]−P[A∩B]−P[A∩
B∩C] added to the RHS, which could be positive or negative.
Since the question was meant to test understanding of the inclusion-exclusion formula, we also gave
credit to ≥.

For the following, let XA, XB, and XC be indicator random variables for events A,B,C.

6. If Cov(XA,XB)> 0, then P[A∩B] P[A]P[B].
Answer: >. P[A∩B] = P[A|B]P[B]. If Cov(XA,XB)> 0 then P[A|B]> P[A].

7. If Cov(XA,XB)> 0 and Cov(XB,XC)> 0, then Cov(XA,XC) 0.
Answer: Incomparable. A,B,C could be the same event in which case Cov(XA,XC) > 0, or A and C
could be disjoint events such that B = A∪C in which case Cov(XA,XC)< 0.

8. If P[A|B] = .6 and P[A] = .5 and P[B] = .5, what is the linear function f (XB) that minimizes E[(XA −
f (XB))

2]?
Answer: .2XB + .4. VarXA = VarXB = .25 and Cov(XA,XB) = (.05). Thus we get f (XB) =

.05

.25(XB −
.5)+ .5 = .2XB + .4.
Another way to arrive at this answer is to notice that the MMSE is E[XA|XB] = P[A|XB], which is
P[A|B] = .6 if XB = 1 and P[A|BC] = .4 if XB = 0. This is the linear function .2XB + .4.

10. More Probability: Cringe?

1. For random variables X and Y , the linear regression line of Y given X goes through the origin if and
only .

Answer: E[Y ] = Cov(X ,Y )
Var(X) E[X ]. This follows by plugging in x = 0, ŷ(x) = 0 into the LLSE formula.

2. For a random variable X , E[X2] = . (In terms of Var(X) and E[X ].)
Answer: Var(X)+E[X ]2. This follows from the variance definition.

3. For random variables X and Y , Cov(XY ) = E[XY ] if E[X ] = E[Y ] = .
Answer: 0. Cov(XY ) = E[(X −E[X ])(Y −E[Y ])] = E[XY ]−E[X ]E[Y ]. Since E[X ] = E[Y ], we need
both to be 0.

4. For independent random variables X and Y , what is the best linear estimator for Y given X , i.e., ŷ(X)?
(Fully simplify the answer for this setup.)
Answer: E[Y ]. The covariance is zero since the variables are independent.
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5. Consider the process of sampling n people who tested for flu last year to determine the fraction, p, of
the population would test positive. To set this up, let Xi be the random indicator variable that i person
in the sample got the flu for i ∈ {1, . . . ,n}.

(a) What is E[Xi] in terms of p?
Answer: p. E[Xi] is just the probability of person i getting the flu.

(b) What is the tightest possible upper bound on Var(Xi), independent of the value of p?
Answer: 1/4. The variance of an indicator random variable with expected value p is p(1− p).
This is maximized by p = 1/2.

(c) Using Chebyshev, give a 95% confidence interval for p, given that 50 people in your sample of
100 people tested positive for having flu.
Answer: [1/2−1/

√
20,1/2+1/

√
20]≈ [.28, .72]

The variance of the proportion who test positive X = 1
100 ∑

100
i=1 Xi is Var(X1)/100 ≤ 1/400. By

Chebyshev’s inequality Pr[|X −E[X ]| ≥ c] = Pr[|X − p| ≥ c]≤ Var(X)
c2 ≤ 1

400c2 . We want 1
400c2 =

1
20 ,

so we set c = 1/
√

20 and get a 95% confidence interval [1/2− c,1/2+ c].

11. The die is cast.

A bag contains a 4-sided die and a 6-sided die. Your friend Lucas pulls a die out of the bag uniformly at
random, rolls it, and gets a 1. Conditional on this event, what is the probability they pulled the 4-sided die
out of the bag? Show your work.

Answer: Let D be the number of sides of the die pulled out of the bag, and R be the roll. The probability
R = 1 is:

P[R = 1|D = 4] ·P[D = 4]+P[R = 1|D = 6] ·P[D = 6] =
1
4
· 1

2
+

1
6
· 1

2
=

5
24

.

By Bayes’ theorem:

P[D = 4|R = 1] =
P[R = 1|D = 4] ·P[D = 4]

P[R = 1]
=

1
4 ·

1
2

5
24

=
3
5
.

12. Fixed Points.

Recall that the number of fixed points X in a permutation π of the n elements {1,2, . . . ,n} is the number of
points such that π(i) = i.

Use the union bound to show that the probability that there are at least k fixed points in a random permutation
of {1,2, . . . ,n} is at most 1

k! .

(Hint: What is the probability 1,2, . . . ,k are all fixed points?)

Answer: Let AS be the event that the points in S are all fixed points. The probability there are at least k
fixed points is the union over all sets S of size k of AS, i.e. ∪S:|S|=kAS. For any set S of k points, they are
all fixed points with probability P[AS] = (n− k)!/n!, since the values of these k points are determined, and
there are (n− k)! permutations of the remaining n− k elements. There are

(n
k

)
= n!

(n−k)!k! =
1

k!Pr[AS]
choices

for S, so the union bound gives an overall probability bound of 1/k!.

13. Happier apart.
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There are 6 students (Alice, Bob, Catherine, Dustin, Emily, and Frank) in a classroom in which 6 seats are
arranged in a circle. When the semester begins, the teacher assigns a seat to each student randomly; that is,
all possible seating assignments are equally likely.

Alice and Bob do not want to be seated next to each other. If they’re assigned to adjacent seats, they will
complain of unhappiness. Determine the probability that the teacher’s seating assignment does not elicit a
complaint.

Answer: 3
5 .

We can sample a seating assignment by first sampling Alice’s seat, then Bob’s seat, then the remaining
students’ seats. After sampling Alice’s seat, there are 2 empty seats next to her and 3 empty seats not next
to her. Bob’s seat is chosen uniformly at random from these, so he has a 3/5 chance of not sitting next to
Alice.

14. Go big! Or not!

You and a friend play marbles. Each player starts with 10 marbles, and to win you must get all 20 marbles.
After deciding on a game, you are given two options of game format. For the game in each part, select the
option maximizing your chance of getting all 20 marbles.

• Option A: Play one round; the winner gets all 20 marbles

• Option B: Play a 20-round series (in the event of a 10-to-10 tie, replay until the tie is broken): whoever
wins more individual rounds gets all 20 marbles

• Option C: Doesn’t matter between A and B. This is the only option that should be selected if A and B
yield equal probability of winning.

(a) Odds and Evens, where you have a 35% chance of winning each round.

(b) Rock-Paper-Scissors, where you have a 50% chance of winning each round.

(c) Mancala, where you have a 90% chance of winning each round.

(d) Nim, where you have a 100% chance of winning each round.

Answer:

(a) A. The law of large numbers suggests our chances of winning decrease as we play more rounds.

(b) C. We have a 1/2 chance of winning in either option.

(c) B. The law of large numbers suggests our chances of winning increases as we play more rounds.

(d) C. We always win regardless of which option we pick.

15. Spam Filter

Jon Byrnu Lee receives many emails each day. Each email is as likely to be Spam (S) as it is to be Not Spam
(Sc)—that is, P[S] = P[Sc] = 1/2.

To increase his daily productivity, Jon decides to implement a content-based statistical filtering algorithm.
By parsing the words in the subject line—perhaps in addition to analyzing other aspects of each email as
well—his spam filter directs each email either to his Inbox or to his Spam Folder. Jon never reads an email
that the filter places in his Spam Folder.

The table below depicts a listing of the probabilities Jon uses to design his spam filter; for ease of nota-
tion and grading, the Symbol column indicates the symbol you should use to denote each word in your
mathematical expressions.

9



SID:

Word Symbol P[Word|S] P[Word|Sc]

Bonds B P[B | S] = 0.1 P[B | Sc] = 0.15
Reward R P[R | S] = 0.15 P[R | Sc] = 0.25
Winner W P[W | S] = 0.08 P[W | Sc] = 0.02

By way of example, the table specifies that the probability that the word "Winner" appears in the subject
line, given that it is Spam, is P[W | S] = 0.08. The probability that the same word appears in the subject line,
given that it is Not Spam, is P[W | Sc] = 0.02.

(a) Determine P[R], the probability of the occurrence of the word ”Reward” in the subject line of his
emails.

Answer: Using the Law of total probability,

P[R] = P[R | S]P[S]+P[R | Sc]P[Sc].

The emails that Jon Byrnu Lee receives are equally likely to be Spam or Not Spam, therefore = 1
2 .

Using the probabilities in the table, we get that

P[R] =
(

15
100

)(
1
2

)
+

(
1
4

)(
1
2

)
=

1
5
.

(b) Given that an incoming email has the word ”Reward,” what is the probability that Jon will read it?
Note that Jon will read it if it is Not Spam. You may leave your answer here in terms of P[R].

Answer: The required probability is P[Sc | R]. Using the Bayes Rule and the Law of Total Probability,
we find that

P[Sc | R] =
P[R | Sc]P[Sc]

P[R]

=

(
1
4

)(
1
2

)
P[R]

=

(
1
4

)(
1
2

)
(

1
5

) =
5
8
.

You receive full credit if you leave the denominator as P[R], provided your numerator is correct.

(c) Jon receives an email at noon containing the words "Bonds" and “Winner" in the subject line. Deter-
mine the probability that this email is Spam.

You may not assume that the words appearing in the subject line are independent. However, you may
assume that the words "Bonds" and "Winner" are independent, conditioned on Spam (S). You may also
assume that the words ”Bonds” and ”Winner” are independent, conditioned on Not Spam (Sc).
Answer: The probability required is P[S | B∩W ]. Using the Bayes Rule, the Law of Total Probability,
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and Conditional Independence, we get

P[S | B∩W ] =
P[B∩W | S]P[S]

P[B∩W ]

=
P[B∩W | S]P[S]

P[B∩W | S]P[S]+P[B∩W | Sc]P[Sc]

=
P[B | S]P[W | S]P[S]

P[B | S]P[W | S]P[S]+P[B | Sc]P[W | Sc]P[Sc]

=

(
10
100

)(
8

100

)(
1
2

)
(

10
100

)(
8

100

)(
1
2

)
+

(
15
100

)(
2

100

)(
1
2

)

P[S | B∩W ] =
8

11
.

16. Going to a party!

Nate is waiting for the bus to go to Professor Rao’s social. The time in between buses arriving at Nate’s
bus stop is an exponential distribution with an average arrival time of 20 minutes. Nate decides that if the
next bus arrives within m minutes, he will take the bus to Professor’s Rao social, and the bus ride takes 10
minutes. Otherwise, Nate will walk to the social, which takes 30 minutes. Prove that no matter the choice
of m, the expected amount of time it will take for Nate to get to the social is 30 minutes.

Answer: Let B be the distribution of the time for the next bus to arrive, which is Exp(λ = 1
20), and T be

the time it takes for Nate to get to the social. Then

E[T ] = E[T |B < m]P[B < m]+E[T |B ≥ m]P[B ≥ m]

= (E[B|B < m]+10)P[B < m]+ (m+30)P[B ≥ m]

by the law of total expectation.

To compute E[B|B < m], we again invoke the Law of Total Expectation:

E[B] = E[B|B < m]P[B < m]+E[B|B ≥ m]P[B ≥ m]

= E[B|B < m](1− e−m/20)+E[B|B ≥ m]e−m/20

We know that E[B] = 20, and by memorylessness, E[B|B ≥ m] = m+20. Thus,

E[B|B < m] =
20− (m+20)e−m/20

1− e−m/20 .

Thus,

E[T ] =

(
20− (m+20)e−m/20

1− e−m/20 +10

)
(1− e−m/20)+(m+30)e−m/20

= 30.

11
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17. Positively Gaussian.

Consider a zero-mean Gaussian random variable X whose probability density function (PDF) is given by

∀x ∈ R, fX(x) =
1

σ
√

2π
e−

x2

2σ2 ,

where σ > 0 is the standard deviation of X .

Define another random variable Y = |X |.

(a) Let K denote an indicator random variable for the event Y ≤ σ . Evaluate—that is, determine a numer-
ical value for—E[K], the mean of K. (Use the standard normal table attached to the final page of the
exam.)
Answer: We know that the mean of an indicator RV is the probability of its defining event. So,

E[K] = P[Y ≤ σ ]

= P[|X | ≤ σ ]

= P
[∣∣∣∣Xσ

∣∣∣∣≤ 1
]

Noting that X/σ is a standardized Gaussian, we have:

E[K] = 2Φ(1)−1 = 2(0.8413)−1,

which leads to

E[K] = P[Y ≤ σ ] = 0.6826.

This is simply the probability that the standard Gaussian is within a standard deviation of its mean.

(b) (5 points) Determine a reasonably simple expression for E[Y ]. Show your setup.
Note: You do not need the PDF fY (y) to determine the mean E[Y ].
Answer:

E[Y ] = σ

√
2
π
.

We use the Expectation Rule for Functions of a Random Variable. That is,

E[Y ] =
1

σ
√

2π

∫ +∞

−∞

|x|e−x2/2σ2
dx.

Noting that the integrand is an even function, we rewrite the right-hand side.

=
2

σ
√

2π

∫ +∞

0
xe−x2/2σ2

dx.

Let u =− x2

2σ2 , so du =− x
σ2 dx, so xdx =−σ2 du. Accordingly,

E[Y ] =− 2σ2

σ
√

2π

∫ −∞

0
eu du.

12
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Flip the limits of the integral to absorb the negative sign in the front.

= σ

√
2
π

∫ 0

−∞

eu du

= σ

√
2
π

eu
∣∣∣∣0
−∞

= σ

√
2
π

e0 − e−∞︸︷︷︸
=0


This leads us to

E[Y ] = σ

√
2
π
.

(c) Determine a reasonably simple expression for the variance of Y .
Note: You do not need the PDF fY (y) to determine the variance σ2

Y . You may leave your answer in
terms of E[Y ] if you wish.
Answer:

σ
2
Y = σ

2
(

1− 2
π

)
.

We know

E[Y ] = σ

√
2
π
.

Therefore, all we need before we can determine the variance σ2
Y is to determine E[Y 2], and use the

identity
σ

2
Y = E[Y 2]−E2[Y ].

Since Y = |X |, we know that Y 2 = X2. But X is a zero-mean random variable, so its variance is equal
to its second moment—that is, σ2

X = E[X2]. But we know that the variance of X is σ2
X = σ2. So, we

have
E[Y 2] = E[X2] = σ

2
X = σ

2.

We can now determine the variance of Y as follows:

σ
2
Y = E[Y 2]−E2[Y ]

= σ
2 −

(
σ

√
2
π

)2

= σ
2 −σ

2 2
π
,

which leads us to

σ
2
Y = σ

2
(

1− 2
π

)
.

If we leave our answer in terms of E[Y ], the answer is σ2 −E[Y ]2.

13
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(d) Determine a reasonably simple expression for, and provide a well-labeled plot of, fY (y), the PDF of
Y . Your plot must be as close to hand-sketched as possible. It must not be generated by a computing
device or software.
Please note that you must account for the entire y axis—that is, your expression must specify what the
PDF fY (y) is for every real y.

Expression:

Well-labeled plot of the fY (Y ) with y-intercept and units in terms of σ on the x-axis.

Answer: Since Y = |X | ≥ 0, it’s clear that fY (y) = 0 for y < 0.
One can then see that Pr[Y ∈ [x,x+ δ ]] = Pr[X ∈ [x,x+ δ ]] +Pr[X ∈ [−x,−x− δ ]], and thus that
fX(y) = 2 fX(x) since X is symmetric.
Or that

fY (y) ==


1
σ

√
2
π

e−y2/2σ2
if y ≥ 0

0 if y < 0.

18. You complete me.

A complete graph Kn is a collection of n nodes where every pair of nodes is connected by an edge. For
example, the complete graph K5 is shown in Figure 1. Throughout this problem, assume that n ≥ 4.

v1

v2

v3v4

v5

Figure 1

v1

v2

v3v4

v5

Figure 2

(a) A triangle is a set of three nodes, each two of which are connected by an edge. Determine tn, the
number of triangles in the complete graph Kn.

14
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Answer: A triangle is a collection of 3 distinct nodes out of n. The order in which we choose 3 nodes

out of n does not matter. So, tn =
(

n
3

)
.

Now assume that we randomly thicken some of the edges in the complete graph Kn. Specifically, each edge
is thickened with probability p, or it’s left intact (thin) with probability 1− p, independently of all other
edges. Figure 2 depicts such a random thickening of edges as applied to the complete graph K5 of Figure 1.

A thick triangle is a triangle that has three thick edges. For example, in Figure 2, the nodes v1, v3, and v5
form the only thick triangle in the graph.

(b) Determine the probability q that the nodes v1, v2 and v3 form a thick triangle.
Answer:

q = P [{(v1,v2) is thick}∩{(v2,v3) is thick}∩{(v3,v1) is thick}]
= P [{(v1,v2) is thick}]P [{(v2,v3) is thick}]P [{(v3,v1) is thick}]
= p3

The second equality follows from independence.

(c) Let Xn be the number of thick triangles in Kn. Determine E[Xn] in terms of possibly tn, p, q, n.
Hint: Appropriately-chosen indicator random variables may be useful to you.
Answer: Let Yi be an indicator random variable which takes the value 1 if the ith triangle in Kn is
thick. From part (a), there are tn triangles in Kn.

Xn =
tn

∑
i=1

Yi

E[Xn] =
tn

∑
i=1

E[Yi] by linearity of expectation

=
tn

∑
i=1

P(Yi = 1)

=
tn

∑
i=1

q = tnq

(d) (10 points.) Determine the variance of Xn, the number of thick triangles in Kn. Express your answer in
terms of tn, p, q, n, or a combination of these. Show your work.

Hint: The number of pairs of triangles in Kn that share exactly one edge is 6
(

n
4

)
.

Answer:

Xn =
tn

∑
i=1

Yi

var(Xn) =
tn

∑
i=1

var(Yi)+∑
i ̸= j

Cov(Yi,Yj)

The variance of Yi is:

var(Yi) = E[Y 2
i ]−E[Yi]

2 = E[Yi]−E[Yi]
2 = q−q2

15
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If triangles i and j have no common edges, Yi and Yj are uncorrelated, and Cov(Yi,Yj) = 0. If they have
one edge in common,

cov(Yi,Yj) = E[YiYj]−E[Yi]E[Yj] = p5 −q2.

From the hint, there are 6
(

n
4

)
pairs of triangles with a common edge. So,

var(Xn) = tn
(
q−q2)+12

(
n
4

)(
p5 −q2)

19. What is the bias?
Consider a coin whose bias (probability) for a "Head" is determined by a continuous random variable Y
uniformly distributed in the interval (0,1). This is shown in the figure below, with random variable K acting
as the indicator variable for the outcome "Head."

Let Hi denote the event that the outcome of the ith toss is a Head. Similarly, Ti denotes the event that the
outcome of the ith toss is a Tail.

Given that Y = y, then we have that

P[Hi | Y = y] = P[Ki = 1 | Y = y] = E[Ki | Y = y] = y,

and

P[Ti | Y = y] = P[Ki = 0 | Y = y] = 1− y,

Moreover, we have the coin flips are conditionally independent, given Y = y. For example,

P[H1 ∩H2 | Y = y] = P[H1 | Y = y]P[H2 | Y = y]

and

P

[
n⋂

i=1

Hi

∣∣∣∣ Y = y

]
=

n

∏
i=1

P[Hi | Y = y],

and so on.

However, suppose you have no observation on Y . In this problem, you’ll show that the coin flips are not
independent.

In what follows, it may be useful to know the Law of Total Probability for an event A and a continuous
random variable Y :

P[A] =
∫ +∞

−∞

P[A | Y = y] fY (y)dy.

16
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(a) (5 points) Determine a reasonably simple closed-form expression for

P

[
n⋂

i=1

Hi

]
= P[H1 ∩H2 ∩·· ·Hn],

in terms of n. Show your setup.
Hint: The events Hi, conditioned on Y = y, are independent.
Answer: Using the Law of Total Probability we have

P

[
n⋂

i=1

Hi

]
=
∫ +∞

−∞

P

[
n⋂

i=1

Hi

∣∣∣∣Y = y

]
fY (y)dy.

We now exploit the conditional independence premise, as well as the description of fY (y), to rewrite
the integral as follows:

P

[
n⋂

i=1

Hi

]
=
∫ 1

0

n

∏
i=1

P[Hi | Y = y]dy

=
∫ 1

0

n

∏
i=1

ydy

=
∫ 1

0
yn dy

=
yn+1

n+1

∣∣∣∣1
0

P

[
n⋂

i=1

Hi

]
=

1
n+1

.

(b) Determine a numerical value for P[H j | Hi] for any pair of distinct positive integers i and j (i ̸= j).
Your result should indicate that Hi and H j are not independent.
Hint: Recall the events Hi and H j, conditioned on Y = y, are independent.
Answer:

P[H j | Hi] =
P[Hi ∩H j]

P[Hi]
=

1
3
1
2

=
2
3
̸= 1

2
= P[H j].

As we can see, the a priori probability of a Head on the jth toss is P[H j] = 1/2, whereas if we’re told
that the outcome of the ith toss is a Head, our belief in the likelihood of H j changes—it increases.
Therefore, we can conclude that Hi and H j are a priori dependent.
Note that we do not assume any particular ordering on i and j. Either one could be the later toss. It
doesn’t matter. The point is that if we’re told that the outcome of some toss (call it the ith) is a Head,
it increases the likelihood of any other toss (call it the jth) being a Head Therefore, Hi and H j are
dependent.

(c) Let M be the random variable denoting the number of tosses up to, and including, the first Head.
Determine a reasonably simple expression for the probability mass function (PMF) pM(m).
A probability tree diagram that might be helpful to you is shown below:

17
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You may find it useful to know the following facts:

• Law of Total Probability involving a discrete and a continuous random variable:

pM(m) =
∫ +∞

−∞

pM|Y (m | y) fY (y)dy.

• For 0 < y < 1 and nonnegative integers α and β ,∫ 1

0
yα (1− y)β dy =

α!β !
(α +β +1)!

.

Answer: If it’s given that Y = y, then the conditional PMF

pM|Y (m | y) = Geom(y) =

{
(1− y)m−1 y m = 1,2,3, . . .
0 elsewhere.

Plugging this and the description of the PDF fY (y) into the Law of Total Probability, we have

pM(m) =
∫ 1

0
(1− y)m−1 ydy,

to which we apply the integral identity (Beta Formula) to obtain

=
(m−1)!1!
(m+1)!

=
1

m(m+1)
.

Accordingly,

pM(m) =


1

m(m+1)
if m = 1,2,3, . . .

0 elsewhere.

Even though you were not asked to do this, you can verify that pM(m) is a valid PMF. First note that
it’s nonnegative for all integers m. Then, note that it sums to 1. In particular,

∞

∑
m=1

pM(m) =
∞

∑
m=1

1
m(m+1)

18
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Apply a partial-fraction expansion to rewrite the right-hand side as:

=
∞

∑
m=1

(
1
m
− 1

m+1

)
=

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
· · · .

= 1−1
2
+

1
2︸ ︷︷ ︸

=0

−1
3
+

1
3︸ ︷︷ ︸

=0

· · ·

All the terms cancel, except the very first one, which is a 1. Therefore,
∞

∑
m=1

pM(m) = 1.

(d) Let L denote the number of Heads in a set of n tosses of the coin. In particular,

L = K1 + · · ·+Kn =
n

∑
i=1

Ki,

where Ki denotes the value of the indicator random variable K for the ith toss. Our primary goal in this
part and the next is estimate the bias Y based on the observed Head count L (pun intended!).
For this part, you may find it useful to know two facts.

• For 0 < y < 1 and nonnegative integers α and β ,∫ 1

0
yα (1− y)β dy =

α!β !
(α +β +1)!

.

• The conditional PDF of Y , given L, is of the form

fY |L(y|ℓ) =

c(n, ℓ)yℓ (1− y)n−ℓ if ℓ ∈ {0,1,2, . . . ,n} and 0 < y < 1.

0 otherwise,

where c(n, ℓ) is the normalization factor, dependent on n and ℓ.

(i) What is the normalization factor c(n, ℓ)?
Answer: The conditional PMF for L, given Y = y, is simply the binomial

pL|Y (ℓ | y) =


(

n
ℓ

)
yℓ (1− y)n−ℓ if ℓ ∈ {0,1,2, . . . ,n} and 0 < y < 1.

0 otherwise.

We now plug this into the appropriate version of the Bayes Rule given in the problem, recognizing
that fY (y) = 1 for 0 < y < 1.

fY |L(y|ℓ) =

(
n
ℓ

)
pL(ℓ)

yℓ (1− y)n−ℓ

=

c(n, ℓ)yℓ (1− y)n−ℓ if ℓ ∈ {0,1,2, . . . ,n} and 0 < y < 1.

0 otherwise,
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where

c(n, ℓ) =

(
n
ℓ

)
pL(ℓ)

.

We need not determine pL(ℓ) for this problem, because we’ll treat c(n, ℓ) as a normalizing factor
that forces the area under the conditional PDF fY |L(y|ℓ) to equal 1. In other words, c(n, ℓ) is such
that

∫ +∞

−∞

fY |L(y | ℓ)dy = 1

c(n, ℓ)
∫ 1

0
yℓ (1− y)n−ℓ dy = 1.

Isolating c(n, ℓ), we have

c(n, ℓ) =
1∫ 1

0
yℓ (1− y)n−ℓ dy

.

We now use the integral identity given in the problem statement:

c(n, ℓ) =
1

ℓ!(n− ℓ)!
(n+1)!

.

c(n, ℓ) =
(n+1)!
ℓ!(n− ℓ)!

.

Therefore, the conditional PDF fY |L(y|ℓ) is given by

fY |L(y|ℓ) =


(n+1)!
ℓ!(n− ℓ)!

yℓ (1− y)n−ℓ if ℓ ∈ {0,1,2, . . . ,n} and 0 < y < 1.

0 otherwise.

(ii) The minimum mean squared-error estimator of Y , based on L, is defined by

ŶMMSE(L = ℓ) = E[Y | L = ℓ] =
∫ +∞

−∞

y fY |L(y|ℓ)dy.

Determine a reasonably simply expression for ŶMMSE(L) in terms of L and n. (If you are unsure
of your expression for c(n, ℓ), you may leave your here in terms of c(n, ℓ).)
Answer:

ŶMMSE(L) = E[Y | L] =
L+1
n+2

.

ŶMMSE(ℓ) = E[Y | L = ℓ]

=
∫ +∞

−∞

y fY |L(y|ℓ)dy

= c(n, ℓ)
∫ 1

0
yyℓ (1− y)n−ℓ dy

= c(n, ℓ)
∫ 1

0
yℓ+1 (1− y)n−ℓ dy
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We now use the integral identity given in the problem statement:

= c(n, ℓ)
(ℓ+1)!(n− ℓ)!

(ℓ+1+n− ℓ+1)!

= c(n, ℓ)
(ℓ+1)!(n− ℓ)!

(n+2)!
.

Now bring in the expression for c(n, ℓ) and simplify:

=
(n+1)!
ℓ!(n− ℓ)!

(ℓ+1)!(n− ℓ)!
(n+2)!

=
ℓ+1
n+2

.

Therefore, the MMSE estimator is given by

ŶMMSE(L) = E[Y | L] =
L+1
n+2

.

(e) Using a formula below, or through some other means, determine a reasonably simple expression for
ŶLLSE(L), the linear least squares estimator (LLSE) for Y , based on L.
Recall that the LLSE is given by:

ŶLLSE(L) = E[Y ]+
σLY

σ2
L

[
L−E[L]

]
Note: Please pause and contemplate before you dive into complicated mathematical manipulations.
This part can be answered without resorting to the LLSE formulas above!
Answer: Among all functions g(L)—linear and nonlinear—of the observed random variable L, the
optimal estimator of Y , in the MMSE sense, is given by ŶMMSE(L) = E[Y | L], which we found to be

ŶMMSE(L) = E[Y | L] =
L+1
n+2

.

But ŶMMSE(L) = E[Y | L] is already of the form α L+β , where α = β =
1

n+2
. Therefore, it is also

the linear MMSE estimator of Y as well. In other words,

ŶLLSE(L) = ŶMMSE(L) =
L+1
n+2

.
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