
CS 70 MIDTERM SOLUTIONS (REWRITTEN) SPRING 2022

1 Pledge

Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others.

In particular, I acknowledge that:

• I alone am taking this exam. Other than with the instructor and GSI, I will not have any verbal, written, or
electronic communication about the exam with anyone else while I am taking the exam or while others are
taking the exam.

• I will not have any other browsers open while taking the exam.

• I will not refer to any books, notes, or online sources of information while taking the exam, other than what
the instructor has allowed.

• I will not take screenshots, photos, or otherwise make copies of exam questions to share with others.

SIGN Your Name:

(Rewritten by Alec Li, as the original solutions have mistakes and unclear answers.)
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2 Warmup: Shoeless

There are 70 people. An even number of them wear one shoe. One half of the remainder wear no shoes, and the rest
wear two shoes.

1. How many shoes are worn in total by the 70 people?

70

2. Briefly justify your answer.

Answer: We know that some number of people are wearing one shoe. From the remainder, we can think of
each person with two shoes as giving one of their shoes to someone wearing no shoes. Since there are an
equal number of people wearing no shoes compared to people wearing two shoes, at the end of this process
everybody will be wearing one shoe. This means that the number of shoes is equal to the number of people,
i.e. there are 70 shoes.

Alternatively, we can set up an equation; let x be the number of people wearing one shoe. The number of
shoes is then

x + 1

2
(70−x) ·2 = x +70−x = 70.

3 Propositional Logic

Let A, B , and C be statements, where A is always true, B is always false, C is always true, and let P (x) and Q(x) be
predicates over a nonempty set S, where the statements ∀x ∈ S, P (x); ∃x ∈ S, Q(x); and ∃x ∈ S, ¬Q(x) are always
true.

1. A =⇒ B

⃝ Always True  Always False ⃝ Depends

Answer: This implication simplifies to “True =⇒ False”, which is false by the definition of implications.

2. B =⇒ A

 Always True ⃝ Always False ⃝ Depends

Answer: This implication simplifies to “False =⇒ True”, which is true by the definition of implications.

3. A =⇒ C

 Always True ⃝ Always False ⃝ Depends

Answer: This implication simplifies to “True =⇒ True”, which is true by the definition of implications.

4. (A∨B) =⇒ ¬C

⃝ Always True  Always False ⃝ Depends

Answer: Directly plugging in, we have “((True)∨ (False)) =⇒ ¬(True)”. The LHS simplifies to True, and the
RHS simplifies to False, meaning the implication simplifies to “True =⇒ False”, which is false.

5. ¬A∨C

 Always True ⃝ Always False ⃝ Depends
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Answer: We can directly plug in to get “¬(True)∨ (True)”, which evaluates to true.

Alternatively, we can see that ¬A∨C ≡ A =⇒ C , which is true from earlier.

6. ∀x ∈ S, Q(x)

⃝ Always True  Always False ⃝ Depends

Answer: We’re given that ∃x ∈ S,¬Q(x), so Q(x) can’t possibly be true for all x ∈ S.

7. ∃x ∈ S, P (x)

 Always True ⃝ Always False ⃝ Depends

Answer: We’re given that ∀x ∈ S, P (x), meaning P (x) is true for all x, so there must be some x that makes P (x)
true (any of them).

8. ∃x ∈ S, Q(x)∧P (x)

 Always True ⃝ Always False ⃝ Depends

Answer: We know that there exists an x that makes Q(x) true, and we also know that P (x) is true for all x,
including the x that makes Q(x) true. As such, there does exist an x that makes both P (x) and Q(x) true.

9. ∀x ∈ S, Q(x)∨P (x)

 Always True ⃝ Always False ⃝ Depends

Answer: Since we know P (x) is true for all x, it doesn’t matter what Q(x) is, as P (x) is always true for all x ∈ S,
making the conjunction true.

4 To Prove or Disprove, that is the question

First, say whether each statement is true or false, and then prove or disprove. The proof or counterexamples should
be brief.

1. Prove or disprove: for x, y,d ∈Z, if d | (x − y), then d | x.

⃝ True  False

Answer: As a counterexample, we can let x = y and d = x +1. In this case, d | (x − y) since d | 0 (anything
divides 0), but (x +1) ∤ x.

For a more concrete example, consider x = y = 2 and d = 3. We have 3 | (2−2), but 3 ∤ 2.

2. Prove or disprove: 2x2 = 4 has no solutions in the rationals.

 True ⃝ False

Answer: Suppose for contradiction that there is a rational solution to 2x2 = 4. This means that there is a
rational solution to x2 = 2, with x =p

2. However, we know from lecture and the notes that
p

2 is irrational, or
equivalently there is no rational solution to x2 = 2; this is a contradiction.

This means that there must not be a rational solution to 2x2 = 4.

5 Stability in Matchings

1. For any stable matching instance, the job optimal stable matching has at least one job that is paired with their
favorite candidate.

⃝ True  False
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Answer: Consider the following stable matching instance:

Job Candidates
A 1 > 2 > 3
B 1 > 2 > 3
C 2 > 1 > 3

Candidate Jobs
1 C > A > B
2 A > B >C
3 A >C > B

Running the propose and reject algorithm (which gives the job optimal stable matching), we have

Candidate Day 1 Day 2 Day 3 Day 4 Day 5
1 A,�B A �A,C C C
2 C B ,�C B A,�B A
3 − − − − B

This gives the matching (A,2), (B ,3), (C ,1), which is a job optimal matching none of the jobs get their favorite
candidate.

2. For any stable matching instance, the job optimal stable matching has no job paired with their least favorite
candidate.

⃝ True  False

Answer: Consider the same instance from the previous question. Here, we have B matched with its least
favorite candidate, 3.

In general, if all jobs have a common least favorite candidate, some job must end up paired with it in the end.

3. For any stable matching instance, the job optimal stable matching has at least one candidate that does not get
their favorite job.

⃝ True  False

Answer: Consider the following stable matching instance:

Job Candidates
A 1 > 2
B 2 > 1

Candidate Jobs
1 A > B
2 B > A

Here, the job optimal stable matching is {(A,1), (B ,2)}, where all jobs and candidates get their favorite choices.

In general, if every job has a distinct favorite candidate, and each one of those candidates like the correspond-
ing job the most, then the propose and reject algorithm ends in one day, and every job and every candidate
gets their favorite choices.

4. For any stable matching instance, all matchings have an even number of rogue couples. (Recall, a stable
matching has 0 rogue couples.)

⃝ True  False

Answer: Consider the following stable matching instance:

Job Candidates
A 1 > 2
B 2 > 1

Candidate Jobs
1 A > B
2 A > B

Consider the matching {(A,2), (B ,1)}. Here, (A,1) is a rogue couple, but B is not in a rogue couple, since
nobody likes B . This means that this matching has exactly one rogue couple, which is not even.

5. Consider an output from running the Propose-and-Reject algorithm on a stable matching instance with n
jobs and n candidates. We then arbitrarily permute one job’s preference list.
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(a) What is the maximum number of jobs that can participate in a rogue couple in the outputted matching
with respect to the permuted preference list?

1

Answer: The only job that can participate in a rogue couple is the one whose preference list was
permuted.

To see why, suppose we look at some other job j , paired with candidate c in the matching. All candidates
that j prefers more than c would have rejected j for some other job they liked more. This means that j
can’t be in a rogue couple with any other candidate—the other candidate wouldn’t like j more than what
they currently have.

(b) What is the maximum number of rogue couples in the outputted matching with respect to the permuted
preference list?

n −1

Answer: We know that no other job can be in a rogue couple, so all possible rogue couples must include
the job whose preference list we permuted.

Suppose the job whose preference list we permuted is job j , paired with candidate c in the matching. If
all other candidates put j at the top of their preference lists, and the permutation moved c to the bottom
of j ’s preference list, then ( j ,c ′) will be a rogue couple for all other candidates c ′. This is because j would
prefer any other candidate c ′ more than c, and any other candidate c ′ prefers j the most.

Since there are n −1 other candidates to form the rogue couple with, the maximum number of rogue
couples with respect to the permuted preference list is n −1.

6 Graphs

You may assume all graphs in this section are simple (as defined in the notes) unless otherwise specified.

1. For all n ≥ 3, any connected graph with n vertices and n edges is planar.

 True ⃝ False

Answer: A graph with n vertices and n edges is a tree with an additional edge. All trees are planar, and adding
an edge will never cause a crossing; there is always a path between any two vertices, since a tree has only one
face—there won’t ever be an edge blocking the path.

2. How many colors are needed to vertex color a bipartite graph of maximum vertex degree d? (Recall that a
valid vertex coloring assigns colors to the vertices such that the vertices in an edge have different colors.)

2

Answer: Any bipartite graph is 2-colorable; we can color each group with one color. All edges are between
these two groups, so this is always a valid coloring.
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3. Consider that G = (V ,E1) and G ′ = (V ,E2) are bipartite, how many colors are sufficient to vertex color G ′′ =
(V ,E1 ∪E2)? (You should give as small a bound as possible.)

4

Answer: We can assign a bitstring to each vertex, representing the color for each vertex. In particular, G can
be colored with two colors; let’s say colors 0 and 1. Graph G ′ can also be colored similarly, with colors 0 and 1.

In the combined graph (V ,E1 ∪E2), we can color a vertex with a length 2 bitstring. The first digit corresponds
to its color in G , and the second digit corresponds to its color in G ′. For example, a vertex colored with 0 in G
and colored with 1 in G ′ will be colored with 01 in G ′′.

Here, we need 4 colors (one for each possible length-2 bitstring) to color G ′′. We can also see that the coloring
is valid: for any edge (u, v), if it came from G , then the first digits of the colors of u and v will differ, and if it
came from G ′, then the second digits of the colors of u and v will differ. This means that u and v will always
be colored with different colors, no matter which edge we look at, making this a valid coloring.

Further, we can see that 4 colors is the tightest bound possible; consider the graph on 4 vertices V =
{v1, v2, v3, v4}. With E1 = {(v1, v2), (v3, v4), (v1, v4), (v2, v3)} and E2 = {(v1, v3), (v2, v4), (v1, v4),(v2, v3)}, the re-
sulting graph G ′′ = (V ,E1 ∪E2) is equivalent to K4, which requires 4 colors to vertex color. An image is shown
below:

v1 v2

v3 v4

+

v1 v2

v3 v4

=

v1 v2

v3 v4

4. Consider bipartite graphs (V ,E1), (V ,E2), (V ,E3), . . ., (V ,Ek ) are bipartite, how many colors are sufficient to
color (V ,E1 ∪·· ·∪Ek )? (You should give as small a bound as possible that is in terms of k.)

2k

Answer: We can generalize the previous part to a k-digit coloring with length k bitstrings. This corresponds to
2k colors, and for any given edge, if it comes from Ei , the i th digit will be different in the colors of its adjacent
vertices.

We can also show that 2k is a tight bound; consider a vertex set V with 2k vertices, each labeled with a different
length k bitstring. We can then construct the graph (V ,Ei ) by looking at the i th digit in the bitstring for each
digit. If the i th digit is a 0, we put it in group 0, and if the i th digit is a 1, we put it in group 1. For each of these
graphs, we include all possible edges between the vertices (i.e. each graph will be a complete bipartite graph).

If we look at the union (V ,E1 ∪E2 ∪·· ·∪Ek ), we claim that this forms the complete graph on 2k vertices, K2k .
In particular, we know that there is a vertex between two vertices if any digit differs between them; if the i th
digit is different, then Ei will have an edge between the two vertices.

Since all vertices have different bitstrings, there will be an edge between all pairs of vertices, and this creates
K2k , which requires 2k colors to vertex color.

5. There is always a vertex of degree at most in a connected bipartite planar graph. Recall that
any bipartite planar graph G = (V ,E) satisfies |E | ≤ 2|V |−4. (You should give as tight of a bound as possible.)
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3

Answer: The total degree is equal to 2|E | by the handshaking lemma. The inequality given in the question
can be multiplied by 2, which gives 2|E | ≤ 4|V |−8, meaning the total degree is at most 4|V |−8. Dividing by
|V |, we have an average degree of at most 4− 8

|V | , i.e. the average degree is always strictly less than 4.

This means that there will always be a vertex of degree at most 3 in the graph to bring down the average degree
to below 4.

6. The complete graph Kn on n > 3 vertices can be made to contain an Eulerian tour by deleting a minimum of
edges. (Answer(s) should be as small as possible and possibly in terms of n.)

even n:
n

2

odd n: 0

Answer: If n is even, then every vertex has an odd degree (each vertex is connected to n −1 vertices, which is
odd since n is even). This means that we can remove n

2 edges, each connected to pairs of distinct vertices, so
that we decrease the degree of every vertex by 1. After the removal of these edges, now every vertex has even
degree, and there exists a Eulerian tour.

If n is odd, then every vertex has an even degree (each vertex is connected to n −1 vertices, which is even
since n is odd). This means that a Eulerian tour already exists, and we don’t need to remove any edges.

7. Consider a connected n-vertex graph G with exactly k cycles. Provide as tight of a bound as possible for each
part. (You may assume n > 4k.)

(a) Remove 2k edges from G produces a graph with at least connected components.

k +1

Answer: If we want to avoid creating new connected components, the first k edges in the best case will
remove all k cycles, turning the graph into a tree. Each additional edge removed will increase the number
of connected components by 1, going from 1 connected components to k +1 connected components.

Intuitively, this is because removing an edge from a tree splits it into two connected components, each
component being its own tree; any further edges removed will remove an edge from one of these smaller
trees, where the same reasoning applies.

(b) Removing 2k edges from G produces a graph with at most connected components.

2k +1
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Answer: If we want to try to create new connected components, all 2k edges can create a new connected
component if none of the edges we remove are in a cycle. This increases the number of connected
components from 1 connected component to 2k +1 connected components.

8. At least d colors are required for a valid vertex coloring for any graph with maximum vertex degree d .

⃝ True  False

Answer: Consider a complete bipartite graph on two vertex sets of size d . Each vertex has degree d , but the
graph can still be vertex colored with 2 colors (one for each set).

9. Removing any degree 2 vertex (and its incident edges) in a connected acyclic graph leaves a graph with two
connected components.

 True ⃝ False

Answer: It’s most intuitive if you draw this out; removing the degree 2 vertex will always cut the graph into
two connected components, as there is no way to get from one side of the removed vertex to the other.

Formally, we know that the original graph is a tree (as it is connected and acyclic), so we originally had n
vertices and n −1 edges. Because of this, removing the degree 2 vertex and its incident edges creates a graph
with n −1 vertices and n −3 edges. Since there are no cycles in the graph (and will still have no cycles after
removing a vertex and two edges), this final graph consists of connected components that are each also trees.

Suppose we have k connected components in the final graph. Looking at the number of edges in total, we
have

∑k
i=1 (ni −1) edges, where ni denotes the number of vertices in the i th connected component (here, we

have ni −1 edges per connected component, because each component is a tree, and thus has one less edge
than the number of vertices in the component).

This sum in the final graph simplifies to
(∑k

i=1 ni
)−k = (n −1)−k; this is because the first quantity

∑k
i=1 ni

sums over all vertex counts for each connected component, and we have a total of n −1 vertices in the final
graph. We’ve calculated that there are n−3 edges in this graph, so we must have k = 2 connected components.

10. Consider a walk in a connected graph G = (V ,E) with |V | ≥ 4 formed by starting at a vertex u and proceeding
by choosing an arbitrary unused edge at the current vertex to get to the next vertex. The process terminates
when it reaches a vertex where all incident edges have already been used.

(a) The walk always terminates at the vertex u if and only if the degree of every vertex is .

even

Answer: It’s always possible to get stuck at a vertex of odd degree if one exists, since we must enter and
leave vertices in pairs. This means that we always use up edges in pairs, so for vertices of odd degree, the
last time we enter the vertex, there will be no corresponding edge to leave from, so we get stuck.

Because of this, there must not be any vertices of odd degree in the graph if we’re guaranteed to terminate
at vertex u; all vertices must have even degree.

(b) For a tree, the walk always terminates at a vertex with degree that is . (Give as specific
of an answer as possible.)

1
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Answer: Since trees are acyclic, the walk will always end at a leaf. In particular, we can never return to a
vertex we visited before (otherwise, we’d have found a cycle, and the graph wouldn’t be a tree), so we’ll
keep visiting new vertices until we have no more adjacent vertices to visit. This will only occur at leaves
of the tree.

(c) For a complete graph on n vertices where n is odd, the walk always forms a Hamiltonian tour.

⃝ True  False

Answer: For n ≥ 4, each vertex has degree at least 3. This means that we must visit some vertex at least
twice to get stuck somewhere—we’d need to use up all of these incident edges in order to terminate, and
to use up 3 edges we’d need to enter and leave the vertex, and then enter the vertex for a second time.
This repetition means that the walk can’t be a Hamiltonian tour.

(d) For a hypercube of dimension n, the walk terminates at an odd degree vertex or at u.

 True ⃝ False

Answer: This is true for any graph, not just for hypercubes.

If there exists an odd degree vertex, it is possible for the walk to terminate there, for reasons mentioned
prior (we enter/leave vertices in pairs of edges, so we have one left over for an odd degree vertex, which
stops us when we visit the vertex for the last time).

If there does not exist any odd degree vertices, then u has an even degree, and the first edge in the
walk leaves an odd number of edges remaining incident to u. Notice that we can’t get stuck at any
other vertices (again, because we enter/leave vertices in pairs), so we must end up back at u, where we
terminate the walk—the last edge in the walk pairs with the first edge in the walk.

7 Modular Arithmetic: what number (or expression)?

1. Give all the solutions to 5x ≡ 3 (mod 24) or write “none”.

15 (mod 24)

Answer: The multiplicative inverse 5−1 ≡ 5 (mod 24), since 5 ·5 = 25 ≡ 1 (mod 24). This means that we have

5x ≡ 3 (mod 24)

x ≡ 5−1 ·3 (mod 24)

≡ 5 ·3 ≡ 15 (mod 24)

2. Give all the solutions to 15x ≡ 3 (mod 24) or write “none”.

5 (mod 8)

Answer: We can’t solve this equation in the same way as the previous part, since gcd(15,24) = 3 ̸= 1, and as
such 15 has no inverse mod 24. However, we can convert this into an equation: 15x = 3+24k for some k ∈Z.
Here, we can divide by 3 to get 5x = 1+8k; converting back to an equivalence, we have 5x ≡ 1 (mod 8).
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Now, we can solve for x using the fact that 5−1 ≡ 5 (mod 8):

5x ≡ 1 (mod 8)

x ≡ 5−1 ·1 (mod 8)

≡ 5 ·1 = 5 (mod 8)

3. Give all the solutions to 15x ≡ 13 (mod 24) or write “none”.

None

Answer: The LHS of the equivalence is a multiple of 3, but the RHS is not a multiple of 3. Adding or subtracting
24 to the RHS will never make it a multiple of 3, as 24 itself is a multiple of 3.

In particular, we have 15x = 13+24k for some k ∈Z. No matter which k we choose, the RHS will never be a
multiple of 3, while the LHS will always be a multiple of 3. This mismatch means that there is no solution to
this equivalence.

4. Compute 21141 (mod 71).

21 (mod 71)

Answer: Notice that 71 is prime. This means that we can use FLT, which says that 2170 ≡ 1 (mod 71), so
21141 = (2170)2 ·21 ≡ 21 (mod 71).

5. Consider an RSA scheme with public key N = 77 and e = 7.

(a) What is the private key?

43

Answer: Since N = 77 = 7 ·11, we have p = 11 and q = 7, with (p −1)(q −1) = 10 ·6 = 60. The private
key is d ≡ e−1 (mod (p −1)(q −1)), and in this case we want to find d ≡ 7−1 (mod 60). We can use the
extended Euclidean algorithm to find this inverse.

Doing this iteratively:

60 = 1 ·60+0 ·7 (E1)

7 = 0 ·60+1 ·7 (E2)

4 = 1 ·60−8 ·7 (E3 = E1 −8 ·E2)

3 =−1 ·60+9 ·7 (E4 = E2 −E3)

1 = 2 ·60−17 ·7 (E5 = E3 −E4)

Under mod 60, we have 2 ·60−17 ·7 ≡−17 ·7 ≡ 1 (mod 60). This means that 7−1 ≡−17 ≡ 43 (mod 60).
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Alternatively, we can do this recursively. In the forward pass, we have

gcd(60,7) = gcd(7,60 mod 7)

= gcd(7,4) 4 = 60−8 ·7

= gcd(4,7 mod 4)

= gcd(4,3) 3 = 7−1 ·4

= gcd(3,4 mod 3)

= gcd(3,1) 1 = 4−1 ·3

= gcd(1,3 mod 1)

= gcd(1,0) = 1

In the backward pass, we have:

1 = 4−1 ·3

= 4−1 · (7−1 ·4)

= 2 ·4−1 ·7

= 2 · (60−8 ·7)−1 ·7

= 2 ·60−17 ·7

This gives the same result, with 7−1 ≡−17 ≡ 43 (mod 60).

(b) What is the decoding of the encrypted message 76? (Give an answer in {0, . . . ,76}. Also, notice that 76 is
one less than 77.)

76 (mod 77)

Answer: Recall that to decrypt a ciphertext x, we have D(x) = xd where d is the private key. Here, we
have a private key of d = 43, and since 76 ≡−1 (mod 77), we have

7643 ≡ (−1)43 =−1 ≡ 76 (mod 77).

6. What is 3042022 (mod 70)? (Answer should be from {0, . . . ,69}.) Please clearly circle/box your final answer.
(Hint: 70 = 2×5×7.)

Answer: We can utilize the Chinese Remainder Theorem; splitting the mod into three parts, we can compute
x = 3042022 under mod 2, 5, and 7.

Since 3042022 is even, we have x = 3042022 ≡ 0 (mod 2).

We also have 3042022 ≡ (−1)2022 = 1 (mod 5).

Lastly, we have 3042022 ≡ 32022 (mod 7). Simplifying this with FLT, we know that 36 ≡ 1 (mod 7), and since

2022 = 6 ·337, we know that 32022 = (
36

)337 ≡ 1 (mod 7).

Together, we have the following system of equivalences:
x ≡ 0 (mod 2)

x ≡ 1 (mod 5)

x ≡ 1 (mod 7)

.

We can solve this mechanically with CRT, or we can deduce the result from the system. Notice that the last
two equivalences imply that x ≡ 1 (mod 35), and the first equivalence says that x must be even. Under mod

11



CS 70 MIDTERM SOLUTIONS (REWRITTEN) SPRING 2022

70, we only have two choices; x ≡ 1 (mod 70) or x ≡ 36 (mod 70). Only the latter is even, so this means that

x ≡ 36 (mod 70) is our solution.

For completeness, here are the mechanical calculations for CRT:

• We want


b1 ≡ 0 (mod 2)

b1 ≡ 0 (mod 5)

b1 ≡ 0 (mod 7)

Letting b1 = 0 satisfies all of these equivalences.

• We want


b2 ≡ 0 (mod 2)

b2 ≡ 1 (mod 5)

b2 ≡ 0 (mod 7)

Starting with 2 ·7 = 14 to satisfy the first and last equivalences, we want to find a k such that 14k ≡ 1
(mod 5), or k ≡ 14−1 ≡ 4−1 ≡ 4 (mod 5). This gives us b2 = 14 ·4 = 56.

• We want


b3 ≡ 0 (mod 2)

b3 ≡ 0 (mod 5)

b3 ≡ 1 (mod 7)

Starting with 2 ·5 = 10 to satisfy the first two equivalences, we want to find a k such that 10k ≡ 1 (mod 7),
or k ≡ 10−1 ≡ 3−1 ≡ 5 (mod 7). This gives us b3 = 10 ·5 = 50.

Together, we have x = b1 +b2 +b3 = 0+56+50 = 106 ≡ 36 (mod 70) as our solution.

8 When the Midterm has Proofs

Given a positive integer n, we define the digital root of n, DR(n), to be the positive integer attained from repeatedly
summing the base 10 digits of n until n is a single digit number. For example, DR(191) = 2 because 191 → 1+9+1 =
11 → 1 = 1 = 2.

Prove that DR(n) ≡ n (mod 9).

Answer: We proceed by strong induction on n.

Base Case (1 ≤ n ≤ 9): If n is a single digit, then DR(n) = n and thus DR(n) ≡ n (mod 9).

Induction Hypothesis: Suppose DR(k) ≡ k (mod 9) for all 1 ≤ k ≤ n.

Inductive Step: We will show the claim for n = k +1. We can write k +1 explicitly in base 10 as

k +1 = a0100 +a1101 +·· ·+a j 10 j ,

for some j ≥ 1 and 1 ≤ a0, a1, . . . , a j ≤ 9 (here, j is the number of decimal digits of k +1).

Notice that DR(k +1) = DR(a0 +a1 +·· ·+a j ), since we’d want to find the digital root of the sum of the digits of k +1
in order to find the digital root of k +1.

By the inductive hypothesis, since 1 ≤ a0 +a1 +·· ·+a j ≤ k, we know that DR(a0 +a1 +·· ·+a j ) ≡ a0 +a1 +·· ·+a j

(mod 9).

Equivalently, we know that

k +1 = a0100 +a1101 +·· ·+a j 10 j

≡ a010 +a111 +·· ·+a j 1 j (mod 9)

= a0 +a1 +·· ·+a j (mod 9)

12
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Together, we have
k +1 ≡ a0 +a1 +·· ·+a j ≡ DR(a0 +a1 +·· ·+a j ) = DR(k +1) (mod 9),

which proves the claim for n = k +1. By the principles of induction, the claim holds for all positive integers n.

9 Polynomial and Applications

1. Consider non-zero polynomials P (x) of degree dp and Q(x) of degree dq , where dp and dq are nonnegative
integers.

(a) What is the maximum degree of P (x)Q(x)?

dq +dp

Answer: The exponent of the leading term of P (x)Q(x) corresponds to the product of the leading terms
in P and Q, which have exponents equal to their degrees. This means that the maximum degree of
P (x)Q(x) is dq +dp , since multiplying the terms adds the exponents.

(b) What is the maximum degree of P (Q(x))?

dp dq

Answer: Consider the leading term of P , xdp . If we plug in x =Q(x), we have
(
xdq +·· ·)dp , which will

have a leading term xdp dq .

In particular, notice that by plugging in Q into P , we’re essentially raising Q(x) to the power of 1,2, . . . ,dp ,
and adding them all together (with some potential constants, but we’re only interested in the exponents).
The largest term that arises when doing this comes from raising xdq to the power of dp , which gives us a
leading term of xdp dq for the polynomial P (Q(x)) with degree dp dq .

(c) What is the maximum degree of P (xQ(x))?

dp (dq +1)

Answer: Similar to the previous part, here we’re multiplying Q(x) by x before plugging it into P . With
respect to the exponents, what we’re essentially doing is increase the power of all the terms in Q by 1,
and then plugging it into P .

With the same reasoning, the leading term of xQ(x) would have exponent dq +1, and after raising this
leading term to the power of dp , we have a leading term of xdp (dq+1), with degree dp (dq +1).

2. If a polynomial P (x) has a root at r , then P (x) = (x − r )Q(x) for some polynomial Q(x).

 True ⃝ False

Answer: We can use long division to get this factorization.

In particular, long division guarantees that dividing P (x) by (x − r ) will give us an expression P (x) = (x −
r )Q(x)+R(x) for some polynomial Q(x) and rational function R(x). Further, R(x) must have a degree strictly

13



CS 70 MIDTERM SOLUTIONS (REWRITTEN) SPRING 2022

less than (x − r ), i.e. of degree zero and is a constant. Since we know that P (r ) = 0, we can plug x = r on the
RHS, giving us (r − r )Q(r )+R(r ) = R(r ) = 0.

This suggests that R(x) = 0 and we can simplify P (x) = (x − r )Q(x) for some polynomial Q(x).

3. Given a degree d polynomial P (x) and k values x1, . . . , xk with k ≤ d , how many polynomials of degree at most
d over arithmetic modulo prime p have the same value as P9x) on x1, . . . , xk ?

pd+1−k

Answer: Note that any polynomial of degree d is uniquely defined by d +1 points. Since we’re fixing k of
these points, we have d +1−k points left to choose for this new polynomial.

Each one of these points has p possible values, so we have a total of pd+1−k possibilities for choosing the
other d +1−k points, each of which defines a unique polynomial.

4. For this problem, consider the Berlekamp–Welch scheme for a message of size n that tolerates k errors.

(a) What is the degree of the polynomial P (x) used to encode the message?

n −1

Answer: Since we want to encode n points into the polynomial, the polynomial will have degree (at
most) n −1.

(b) What is the degree of the error locator polynomial E(x) in the reconstruction algorithm?

k

Answer: We want to tolerate against k errors, and the error locator polynomial has exactly k factors of
(x −ei ), each corresponding to the location ei of an error in the received message. This means that the
error locator polynomial has degree k.

(c) What is the degree of Q(x) = P (x)E(x) in the reconstruction algorithm?

n +k −1

Answer: We can just multiply P (x)E (x); the degree of this new polynomial comes from its leading term,
which is the product of the leading terms of P (x) and E(x). Since these leading terms have exponents
n −1 and k respectively, the degree of Q(x) is then n +k −1.

(d) If there were i ≤ k errors, the recovered E(x) has at least roots. Give the largest lower
bound you can.
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i

Answer: The error locator polynomial must be equal to zero at these i error locations, and we don’t care
about where the other zeroes go; this means that at minimum we must have i roots, one for each error
location, but we could have more.

10 Polynomials and Functions

1. Consider any function f (x) where the domain and range is arithmetic modulo a prime p.

(a) Prove that f (x) corresponds to a polynomial expression modulo p.

Answer: Since the domain of f is arithmetic modulo p, f is defined on p different x-values, so we have
a total of p points that define f (x). Using Lagrange interpolation, we can use these p points to construct
a degree p −1 polynomial, which agrees with f (x) on all of its points mod p.

(b) Give a tight upper bound on the minimum degree of a polynomial that represents f (x). (Your proof
above may be useful.)

p −1

Answer: With the same reasoning as above, we have p points that define f , and any p points uniquely
define a degree at most p −1 polynomial.

2. Consider a composite number m = p1p2, with p1 and p2 different primes, and a polynomial P (x) over
arithmetic modulo m.

(a) Give a tight upper bound on the minimum degree of a polynomial expression equivalent as functions to
P (x) (i.e. gives the same value when evaluated at all x). (Hint: Think about question 1(b) and CRT.)

max(p1 −1, p2 −1)

(b) Justify your answer above. That is, show that any polynomial over arithmetic modulo m can be repre-
sented by an expression of degree at most your answer above.

Answer: Consider a polynomial P (x) over arithmetic modulo m; suppose we define P1(x) ≡ P (x)
(mod p1) and P2(x) ≡ P (x) (mod p2).

We know that P1 has degree at most p1 −1, and P2 has degree at most p2 −1 by FLT (as any term xk for
k ≥ p can be simplified and reduced).

With this in mind, we can combine P1 and P2 to construct a new polynomial Q(x) such that

Q(x) ≡ P1(x) (mod p1)

Q(x) ≡ P2(x) (mod p2)

In particular, for any fixed x, CRT guarantees a unique solution for Q(x) (mod p1p2), matching with the
value of P (x) exactly at each location (as we’ve defined P1(x) and P2(x) to match exactly with P (x) under
mod p1 and p2 respectively).
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To find out what Q(x) actually is, we can use the formula for CRT to arrive at

Q(x) ≡ P1(x) ·p2 ·
(
p−1

2 mod p1
)+P2(x) ·p1 ·

(
p−1

1 mod p2
)

(mod p1p2).

Since p2 ·
(
p−1

2 mod p1
)

and p1 ·
(
p−1

1 mod p2
)

are both just constants, the degree of Q(x) is equal to the
larger of the degrees of P1(x) and P2(x), i.e. max(p1 −1, p2 −1).

(c) Any function under arithmetic modulo m corresponds to a polynomial.

⃝ True  False

Answer: There aren’t enough polynomials of degree max(p1 −1, p2 −1) to represent all functions under
modulo m.

Specifically, there are a total of mm different functions under modulo m (i.e. each of the m possible x-
values has a total of m possible y-values), but only mmax(p1,p2) possible polynomials, since the maximum
degree is max(p1 −1, p2 −1), so we have max(p1, p2) points to define the polynomial with (i.e. one more
than the degree; each of the max(p1, p2) points has m possibilities for y-values).

Since mm > mmax(p1,p2), there are more possible functions than possible polynomials, so there are
functions that do not correspond to any polynomial under modulo m.

11 Count the Ways

Jonathan is playing a game called 70rdle. In this game, the 70 staff has a secret string of five upper-case English
letters, and Jonathan must guess exactly what the string is. Assume each subpart is independent of the other
subparts. The English alphabet has 26 letters.

1. With no restrictions, how many strings are possible?

265

Answer: We have 26 choices for the first letter, 26 choices for the second letter, etc. This means that the total
number of strings is 26 ·26 ·26 ·26 ·26 = 265.

2. If no letter is allowed to appear in the string more than once, how many strings are possible?

26!

21!

Answer: Since all letters must be distinct, we can first choose the set of 5 letters out of the 26 total letters to
include in the string; there are

(26
5

)
ways to do this. Next, we can order these 5 distinct letters in any way; there

are 5! ways to do this. This makes the final answer(
26

5

)
5! = 26!

21!5!
5! = 26!

21!
.

3. If the letters in the string must be sorted in alphabetical order, how many strings are possible? For example,
AABCD is valid, but ABCDA is not.
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(
30

5

)
=

(
30

25

)

Answer: We can view this as a stars and bars problem—order doesn’t matter (as we will always have exactly
one ordering of the letters we pick), but we choose with replacement (as we can have duplicate letters).

There are 5 stars (the letters we choose), and 26 categories (one for each kind of letter), meaning we have 25
bars. This gives an answer of

(25+5
5

)= (30
5

)
or

(25+5
25

)= (30
25

)
.

4. How many strings contain at least one J?

265 −255

Answer: It’s perhaps easier to count the strings that contain no J’s (i.e. the complement of what we’re actually
trying to count). In order to choose a string with no J’s, we can just remove J from consideration, leaving only
25 letters to choose from. This gives us 255 possible strings with no J’s.

Subtracting from the total of 265 possible strings we can make, the total number of strings with at least one J is
265 −255.

5. How many strings contain at least one J in the first two letters?

2 ·264 −263

Answer: We can use the principle of inclusion-exclusion here. There are a total of 264 strings with a J as the
first letter, and 264 strings with a J as the second letter. However, we’ve overcounted—the strings with J as both
the first and second letter are counted twice. This means that we need to subtract this overcounting—there
are 263 such strings with J as both the first and second letter.

This gives an answer of 2 ·264 −263.

6. How many strings contain exactly four J’s?

125

Answer: A string with exactly four J’s has only one letter that is not a J; there are 25 choices for what this other
letter is. We can also put this letter anywhere we want, in any of the 5 positions in the string, so in total we
have 5 ·25 = 125 possible strings.

7. How many strings contain exactly five J’s?

1

Answer: There is only one string: JJJJJ.
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12 A little bit of Fermat from Induction

Suppose p is a prime.

1. Prove that for any 1 ≤ k ≤ p −1, p | (p
k

)
.

Answer: We may express (
p

k

)
= p !

k !(p −k)!
.

Since 1 ≤ k ≤ p −1, neither k ! nor (p −k)! have factors of p, but p ! has a factor of p.

This means that the factor of p in the numerator is not canceled out by any factors of p in the denominator,
and p | (p

k

)
.

2. Prove Fermat’s Little Theorem via induction: in other words, prove that for all integers a,

ap ≡ a (mod p).

(Hint: You may find the Binomial Theorem helpful: (x + y)p =∑p
i=0

(p
i

)
xp−i y i .)

Answer: We proceed by induction on a.

Base case (a = 0): We have ap ≡ 0p ≡ 0 ≡ a (mod p).

Induction Hypothesis: Suppose ap ≡ a (mod p).

Inductive Step: We will show the case for a +1, i.e. we will show that (a +1)p ≡ a +1 (mod p).

Applying the Binomial Theorem, we have

(a +1)p =
p∑

i=0

(
p

i

)
ap−i 1i

=
p∑

i=0

(
p

i

)
ap−i

=
(

p

0

)
ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 +·· ·+

(
p

p −1

)
a +

(
p

p

)

Notice that from part (a), any
(p

k

)
for 1 ≤ k ≤ p −1 are all multiples of p; this means that

(p
k

)≡ 0 (mod p) for
all 1 ≤ k ≤ p −1. If we take the above expansion modulo p, all the terms cancel out except for the terms with(p

0

)
and

(p
p

)
:

≡
(

p

0

)
ap +

(
p

p

)
(mod p)

= ap +1 (mod p)

≡ a +1 (mod p)

Here, in the last equivalence we used the inductive hypothesis to simplify ap (mod p). This proves the claim
for a +1, and by the principles of induction, the claim holds for all a ≥ 0.

We also want to show the claim for negative a; this follows from the equivalence of all integers into a residue
class in {0, . . . , p −1}. In particular, all negative integers are equivalent to some number in {0, . . . , p −1}, and
we’ve proven such cases through induction.

This means that the claim holds for all integers a, as desired.
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13 Rare Scheme for Alice

Bob is trying to send a message m to Alice1, . . ., AliceM , such that if k of the Alices agree, they can construct the
message. However, he wants to prevent Eve from reconstructing the message, even if she is able to determine all of
the Alices’ points.

The Alices use the same RSA scheme, broadcasting the public key (N ,e). Bob then uses the polynomial secret
sharing scheme (over arithmetic modulo a sufficiently large prime p), sending points (1, x1), . . . , (M , xM ) to Alice1,
. . ., AliceM , respectively, such that if P (x) is the polynomial determined by the points, then P (0) is me .

1. After completing the interpolation, how can the Alices reconstruct m?

Answer: Since the Alices know d , they can compute (me )d ≡ med ≡ m (mod N ); the correctness follows from
RSA.

2. Eve doesn’t know the Alices’ private key d , but knows N , e, and p. She manages to trick all of the Alices into
revealing (1, xd

1 ), . . . , (M , xd
M ). Prove that if M > (k −1)d , then Eve can find the message m without figuring out

the value of d .

Answer: Eve can perform Lagrange interpolation on the (i , xd
i ) points to get a unique polynomial Q(x) of

degree at most M −1. We claim that Q(x) = P (x)d .

Note that for 1 ≤ i ≤ m, we have Q(i ) = xd
i = P (i )d . If we consider the polynomials Q(x) and P (x)d , we can see

that both polynomials agree on these M points.

Further, we know that P (x) has degree k −1, since we want the k Alices to be able to reconstruct P (x) with
their k points. This means that P (x)d has degree d(k −1).

Looking at the difference of the two polynomials, we can see that Q(x)−P (x)d has degree max(M−1,d(k−1)) ≤
M −1, since M > d(k−1). Because Q(x)−P (x)d = 0 at the M points x1, . . . , xM , and it has degree at most M −1,
it is uniquely defined by these M points, and must be the zero polynomial.

This means that Q(x)−P (x)d = 0, which implies that Q(x) = P (x)d . In particular, to get the secret message, we
know that Q(0) = P (0)d = (me )d = med = m.

Throughout this process, Eve has no knowledge of d , only P (x)d , which gives no information about d ; however,
Eve was still able to reconstruct the message m.
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