
CS70 Discrete Mathematics and Probability Theory, Fall 2019

Midterm 2 8:00-10:00pm, 14 November

Your First Name: Your Last Name:

SIGN Your Name: Your SID Number:

Your Exam Room:

Name of Person Sitting on Your Left:

Name of Person Sitting on Your Right:

Name of Person Sitting in Front of You:

Name of Person Sitting Behind You:

Instructions:

(a) As soon as the exam starts, please write your student ID in the space provided at the top of every
page! (We will remove the staple when scanning your exam.)

(b) There are 5 double-sided sheets (10 numbered pages) on the exam. Notify a proctor immediately if a
sheet is missing.

(c) We will not grade anything outside of the space provided for a question (i.e., either a designated box
if it is provided, or otherwise the white space immediately below the question). Be sure to write your
full answer in the box or space provided! Scratch paper is provided on request; however, please
bear in mind that nothing you write on scratch paper will be graded!

(d) The questions vary in difficulty, so if you get stuck on any question it may help to leave it and return
to it later.

(e) On questions 1-2, you need only give the answer in the format requested (e.g., True/False, an expres-
sion, a statement.) An expression may simply be a number or an expression with a relevant variable
in it. For short answer questions, correct, clearly identified answers will receive full credit with no
justification. Incorrect answers may receive partial credit.

(f) On questions 3-6, you should give arguments, proofs or clear descriptions if requested. If there is a
box you must use it for your answer: answers written outside the box may not be graded!

(g) You may consult one two-sided “cheat sheet” of notes. Apart from that, you may not look at any other
materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

(h) You may use, without proof, theorems and lemmas that were proved in the notes and/or in lecture.

(i) You have 120 minutes: there are 6 questions on this exam worth a total of 140 points.

[exam starts on next page]
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1. True/False [No justification; answer by shading the correct bubble. 2 points per answer; total of 28 points.
No penalty for incorrect answers.]

(a) For each of the following sets, indicate whether it is finite, countably infinite (CTBL INF) or uncount-
able (UNC) by shading the appropriate bubble.

FINITE CTBL INF UNC

j { j The set { 2i

3j | i, j ∈ N}. 2pts

j j { The set of all subsets of the prime numbers. 2pts

j { j The set of all finite sets of rational numbers. 2pts

j j { The set of real numbers in the interval [0, 1] whose decimal expansion involves only 2pts
the digits 3 and 5.

j { j The set of finite arithmetic expressions over the integers, using symbols +,−,×,÷, (, ). 2pts

{ j j The set of all movies with file size at most 4 GB. 2pts

(b) Indicate which of the following statements is TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

{ j Every infinite set has a countably infinite subset. 2pts

{ j There are uncountably many real polynomials of degree 2 that pass through the points (0, 0) and 2pts
(1, 1).

{ j Let A and B be finite sets. If f : A → B is a surjection such that |f−1({b})| ≤ m for all b ∈ B, 2pts
where f−1 denotes the preimage of f , then |A| ≥ |B| ≥ |A|/m.

j { For events A and B on the same probability space such that A ⊆ B, it is possible to have 2pts
P[A] > P[B].

j { For any event B on the probability space (Ω, P), P[B] =
∑n

k=1 P[B ∩Ak] if A1, A2, . . . , An are 2pts
any subsets of the same sample space Ω satisfying A1 ∪A2 ∪ · · · ∪An = Ω.

j { For events A,B on the same probability space, if A ∩B = ∅, then A and B are independent. 2pts

{ j Let X and Y be Bernoulli random variables. If P[X = 0, Y = 1] = P[X = 0] P[Y = 1], then X 2pts
and Y are independent.

{ j For all random variables X and Y defined on the same probability space, 2pts
E[XY ] ≤ 1

2(E[X2] + E[Y 2]).
[exam continued on next page]



Your SID Number: Page 3

2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification
necessary. 3 points per answer; total of 54 points. No penalty for incorrect answers.]

(a) Two real polynomials P (x), Q(x) have degrees exactly 3 and 2 respectively. What is the maximum 3pts
number of points x for which P (x) = Q(x)?

3. [P (x) = Q(x) if and only if P (x) − Q(x) = 0. But P (x) − Q(x) is a polynomial of degree
exactly 3, and so can have at most 3 zeros. P (x) = x3 + 2x and Q(x) = 3x2 is an example where
P (x)−Q(x) has exactly three roots.]

(b) Two real polynomials P (x), Q(x) have exactly 2 and 3 zeros respectively. What is the maximum pos- 3pts
sible number of zeros of P (x)Q(x)?

5. [If x is a root of either P (x) or Q(x), then it must also be a root of P (x)Q(x). Furthermore,
if x is a root of neither P (x) nor Q(x), then it cannot be a root of P (x)Q(x). If the roots of P (x) and
Q(x) are all distinct, then P (x)Q(x) has 5 roots.]

(c) A polynomial P (x) of degree 2 over GF (11) has zeros at x = 0 and x = 2, and passes through the 3pts
point (1, 1). What is P ? [All coefficients should be integers in {0, . . . , 10}.]

P (x) = 10x2 + 2x + 0. [Since P (x) is quadratic with roots x = 0 and x = 2, it must be of the form
P (x) ≡ c · x(x − 2) (mod 11), where the constant c is determined by 1 ≡ P (1) ≡ c · 1 · (1 − 2)
(mod 11). Namely, c ≡ −1 (mod 11). That is, P (x) ≡ −x(x − 2) ≡ −x2 + 2x ≡ 10x2 + 2x
(mod 11).]

(d) Alice uses the Berlekamp-Welch encoding scheme to send Bob a message consisting of three char-
acters, each an integer mod 11, using a degree-2 polynomial P (x) over GF (11) where the message
characters are encoded as P (1), P (2), P (3). It is known that up to two characters may be corrupted
during transmission. Answer the following questions.

(i) How many points of P in total must be sent to ensure that the message can be reconstructed? 3pts

7. [In order to send a message of length m = 3 while guarding against e = 2 errors, we need a
total of m + 2e = 7 packets.]

(ii) Following the Berlekamp-Welch scheme, Bob computes the error-locator polynomial as E(x) = 3pts
x2 + 7x + 3. Which of the characters, P (1), P (2), P (3), were corrupted?

P (1) and P (3). [The locations of the corrupted packets are given by the roots of E(x) (mod 11).
E(x) ≡ (x− 1)(x− 3) (mod 11), so the roots are x = 1 and x = 3.]

(iii) Bob also computes the polynomial Q(x) = x4 +7x3 +4x2 +7x+3 (with notation as in the class 3pts
notes). What was the original message sent by Alice?

2, 5, 10. [P (x) = Q(x)/E(x) = x2 + 1, and P (1) = 2, P (2) = 5, P (3) = 10.]

[Q2 continued on next page]
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PLEASE NOTE: In the remaining short problems, express your answers in terms of binomial
coefficients and factorials whenever possible.

(e) How many distinct 6-digit numbers can you create by rearranging the numbers {1, 3, 5, 7, 7, 9} such 3pts
that no two consecutive numbers are identical?

6!
2 − 5! = 2 · 5! = 240. [There are 6!

2 ways to rearrange the six numbers (accounting for the fact
that the two 7’s are indistinguishable), and in 5! of those, the two 7’s are located next to each other
(treating them as one unit gives us 5 units to permute).]

(f) Suppose you hold 100 stocks for each of five utility companies, including PG&E. You wish to sell a 3pts
total of 100 stocks while ensuring you sell at least 50 PG&E stocks. In how many different ways can
you do this? (Stocks in a given company are indistinguishable.)(
54
4

)
. [This is a balls-and-bins problem (a.k.a. stars-and-bars problem), where we distribute k = 100

balls (stocks) over n = 5 bins (utility companies), making sure that bin 1 (PG&E) has at least 50 balls.
Placing any of the 50 (indistinguishable) balls into bin 1 leaves us with k− 50 = 50 balls to distribute
over n = 5 bins, for a total of

(
k−50+n−1

n−1

)
=

(
54
4

)
possibilities.]

(g) For k ≤ n, how many functions from {1, . . . , k} to {1, . . . , n} are not injective? 3pts

nk − n!
(n−k)! . [As discussed in lecture, the total number of functions f from K = {1, . . . , k} to

N = {1, . . . , n} is nk (each element in K can be assigned to any element in N ), while the number
of injective functions from K to N is n!

(n−k)! (which corresponds to the number of ways to choose
k ordered elements from N without replacement). Subtracting the latter from the former gives the
answer.]

(h) What should x be to make the following a valid combinatorial identity?
∑n−k−1

m=k

(
m
k

)(
n−m−1

k

)
=

(
n
x

)
. 3pts

2k + 1. [The RHS counts the number of ways to choose a subset of size 2k + 1 from {1, . . . , n}.
The LHS does the same by summing over the possibilities of what the (k + 1)st-smallest element in
this subset can be: let m+1 be the (k+1)st-smallest element, and choose k elements from {1, . . . ,m}
and k elements from {m + 2, . . . , n}.]

(i) Consider a biased coin which shows heads with probability 2/3. Suppose Alice tosses the coin n times
and then Bob also tosses it n times. You may assume independence between trials.

(i) For j, k ∈ {0, 1, . . . , n}, let Aj denote the event that Alice gets heads j times, and Bk the event 3pts
that Bob gets heads k times. Find P[Aj ∩Bk].(
n
j

) (
2
3

)j (
1
3

)n−j ·
(
n
k

) (
2
3

)k (
1
3

)n−k =
(
n
j

)(
n
k

)
2j+k

32n . [Aj and Bk are the events that two independent
binomial random variables assume values j and k, respectively. That is, if X ∼ Bin

(
n, 2

3

)
and

Y ∼ Bin
(
n, 2

3

)
are independent, then P[Aj ∩Bk] = P[X = j, Y = k] = P[X = j] · P[Y = k].]

(ii) For m ∈ {0, . . . , 2n}, let Sm denote the event that the sum of the number of heads Alice gets 3pts
and the number of heads Bob gets is equal to m. Find P[Sm]. (NOTE: Your answer should not
involve any summation signs.)(
2n
m

) (
2
3

)m (
1
3

)2n−m =
(
2n
m

)
2m

32n . [We are throwing the same coin 2n times independently, and are
interested in the probability of observing m heads. This is P[Z = m], where Z ∼ Bin

(
2n, 2

3

)
.]

[Q2 continued on next page]
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(j) In the U.S., suppose the proportion of people who have diabetes is d > 0, and a fraction m > 0 of 3pts
those people have a particular risk mutation. Also, among those who do not have diabetes, a fraction
a > 0 do not have the risk mutation. Suppose a person is selected uniformly at random from the pop-
ulation. Given that the person has the risk mutation, what is the probability that she/he has diabetes?
Express your answer in terms of d, m, and a.

dm
dm+(1−a)(1−d) . [If D and M are the events of having diabetes and carrying the risk mutation, re-

spectively, then by Bayes’ rule we have P[D | M ] = P[M |D]P[D]

P[M |D]P[D]+P[M |D]P[D]
. We are given P[D] = d,

P[M | D] = m, and P[M | D] = a, so P[D] = 1 − d and P[M | D] = 1 − a. Plugging in these
probabilities into the above formula for P[D | M ] yields the answer.]

(k) In a given day, a computer manufacturer produced L laptops each containing 4 memory chips. It turns
out that, of the 4L chips inserted into the laptops, exactly d chips were defective. Assume that the
memory chips were well shuffled before they went into the laptops, and let X denote the number of
defective memory chips in a randomly selected laptop. For k ∈ {0, 1, 2, 3, 4}, what is P[X = k]?

(d
k)(

4L−d
4−k )

(4L
4 ) or equivalently

(4
k)(

4L−4
d−k )

(4L
d ) . [This is the distribution of a Hypergeometric (4L, d, 4), or equiv-

alently Hypergeometric (4L, 4, d), random variable: Sampling 4 chips without replacement from d
defective and 4L − d functional chips for any given laptop is the same as drawing 4 balls from a bag
of d black and 4L− d white balls. Alternatively, sampling without replacement d chips to be defective
from 4 chips of the laptop of interest and the 4L − 4 chips contained in the other laptops is the same
as sampling d balls from a bag of 4 black and 4L− 4 white balls.]

(l) Suppose a single card is dealt from a well-shuffled standard deck of 52 cards. What is the probability 3pts
that the card is either a red suit or an ace?

28
52 = 7

13 . [The event in question contains a total of 28 cards: The 26 red suits and ♠A and ♣A.
Alternatively, P[Ace or Red] = P[Ace] + P[Red]− P[Ace and Red] = 4

52 + 26
52 −

2
52 = 28

52 = 7
13 . ]

(m) Let X be a random variable with P[X = −4] = 1
4 , P[X = 0] = 1

4 , and P[X = 4] = 1
2 . Find E[X], 3pts

E[X2] and Var[X].

E[X] = −4 · 1
4 + 0 · 1

4 + 4 · 1
2 = 1, E[X2] = (−4)2 · 1

4 + 0 · 1
4 + 42 · 1

2 = 12,

Var[X] = E[X2]− (E[X])2 = 11.

(n) Let X and Y be independent random variables with Var[X] = 2 and Var[Y ] = 3. Find Var[3X −Y ]. 3pts

21. [Since Var[aZ] = a2Var[Z] for any constant a and random variable Z, and Var[Z1 + Z2] =
Var[Z1]+Var[Z2] if Z1 and Z2 are independent random variables, we have Var[3X−Y ] = Var[3X+
(−Y )] = Var[3X] + Var[−Y ] = 32Var[X] + (−1)2Var[Y ] = 9 · 2 + 1 · 3 = 21.]

(o) Consider two events A and B on the same probability space and suppose A ⊂ B. Let IA and IB de- 3pts
note indicator random variables for events A and B, respectively. Find Cov(IA, IB) in terms of P[A]
and P[B].

P[A](1− P[B]). [Cov(IA, IB) = E[IAIB]− E[IA]× E[IB] = P[A]− P[A]× P[B].]

[exam continued on next page]
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3. Homomorphic Secret Sharing [Total of 13 points.]

A group of n students in a charity fundraising group wish to compute the total amount of money they have
raised without revealing how much each of them has individually raised. To do this, they enlist the help of
k ≥ 2 administrators at the charity. Under the assumption that individual amounts are natural numbers no
larger than $1,000, the students want to design a scheme with the following properties:

(i) The k administrators can work together to compute the sum of the raised amounts.

(ii) The administrators cannot discover anything about the individual amounts raised by the students (other
than what can be deduced from the sum), unless all k of them conspire to do that.

Since the students have recently taken CS70, they come up with the following secret sharing scheme to solve
this problem:

Each student i, for 1 ≤ i ≤ n, constructs a polynomial pi over GF (q), for a suitable prime q, so that pi(0) =
mi, the amount that i has raised. The student then sends the value pi(j) (mod q) to administrator j, for all
1 ≤ j ≤ k.

Answer the following questions about this scheme.

(a) What should the degree of the polynomials pi be? Write your answer in the box; no justification re- 2pts
quired.

k − 1. [Each of the k administrators will have one point on the polynomial.]

(b) How can the administrators compute the total amount of money raised,
∑n

i=1 mi, without computing 5pts
the individual amounts mi? Be sure to specify clearly the computations that the administrators per-
form.

The idea is that the administrators will combine their information in order to compute the polyno-
mial p(x) :=

∑
i pi(x) (mod q). Since pi(0) = mi for each i, they will then be able to immediately

deduce the desired sum from the fact that p(0) =
∑

i pi(0) =
∑

i mi.
Since the degree of p is the same as that of the pi, in order to recover p they need its value at k distinct
points. For each 1 ≤ j ≤ k, the jth administrator can deduce the value p(j) by computing the sum∑

i pi(j) of the values received from each of the n students. The administrators then combine the
values p(1), . . . , p(k) using Lagrange interpolation to deduce the entire polynomial p.
NOTE: It is crucial that the administrators do not compute the individual polynomials pi by sharing all
the values pi(j), as this would reveal the individual amounts mi. They must work only with the sums.

[Q3 continued on next page]



Your SID Number: Page 7

(c) Give a lower bound on the field size q. Write your answer in the box; no justification required. 2pts

q ≥ max{1000n, k + 1}. [1000n is the maximum possible value of the sum; if q is smaller than
this then information will be lost when doing computation mod q. We also need q ≥ k + 1 in order
to get k distinct non-zero points on the polynomials. Of course, in practice 1000n will be much larger
than k + 1, so we really only need to ensure that q ≥ 1000n.]

(d) Explain briefly why this scheme is secure in the sense demanded by the students, i.e., why the admin- 4pts
istrators cannot learn anything about the individual amounts mi unless all k of them conspire to do so
(as specified in property (ii) above).

Suppose that the administrators compute the sum polynomial p as described in part (b), and then k− 1
of them conspire to try to discover the individual amounts mi of the students. WLOG, we may assume
that administrators 1, . . . , k − 1 are the conspirators. Intuitively, the security of the scheme follows
from the fact that, even if they share all their values pi(j), these conspirators only have k − 1 points
on each of n polynomials pi, each of degree k, so they have no information about the missing values
pi(0) = mi. But this intuition is not completely convincing because it doesn’t rule out the possibility
that the conspirators could combine this information with their knowledge of the sum polynomial p(x)
to get more information about the mi.
To give a convincing argument, we will show that every student i can change his/her amount to any
value m′

i, subject only to the constraint that
∑

i m
′
i =

∑
i mi, without changing the values given to

the k − 1 conspiring administrators or the sum polynomial p. This will show that the information
possessed by those administrators is consistent with any such set of amounts for the students, meaning
that the administrators have learned nothing other than the sum polynomial p.
To see the above claim, suppose the students recompute their polynomials as p′i(x), where p′i(j) =
pi(j) for 1 ≤ j ≤ k − 1, and p′i(0) = m′

i. Thus p′i agrees with pi at all points x = 1, . . . , k − 1, but
has a different value at 0 (namely, m′

i instead of mi). These k points define a unique polynomial p′i
of degree k − 1. Now, as far as the k − 1 administrators are concerned, all the polynomials p′i are
indistinguishable from the original polynomials pi; and, moreover, the sum polynomial p′ :=

∑
i p

′
i is

the same as the original sum polynomial p =
∑

i pi, since these two degree-(k− 1) polynomials agree
on the k points 0, 1, . . . , k − 1. (They may disagree at the point k, but that is not a problem since we
are interested only in how things look to the conspiring administrators.)

[exam continued on next page]
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4. Counting [Total of 14 points.]

Alice has n distinct items on her wish list W = {1, . . . , n} and, after getting her first paycheck, she decides
to purchase m ≤ n items from the list. Suppose items 1, . . . , k, where k < m and k ≤ n−m, are of special
interest to her. (NOTE: Whenever possible, express your answers in terms of binomial coefficients.)

(a) In how many ways can Alice choose m distinct items from her wish list W ? Write your answer in the 2pts
box; no justification required.(

n
m

)
.

(b) If all of items 1, . . . , k must be included, in how many ways can Alice choose m distinct items from 3pts
W ? Write your answer in the box; no justification required.(

n−k
m−k

)
. [If all of items 1, . . . , k are included in the selection, the remaining m − k items must be

chosen from {k + 1, . . . , n}, which can be achieved in
(

n−k
m−k

)
different ways.]

(c) If at least two of items 1, . . . , k must be included, in how many ways can Alice choose m distinct items 4pts
from W ? Write your answer in the box; no justification required.

Solution 1:
(

n
m

)
−

(
n−k
m

)
−k

(
n−k
m−1

)
. [There are

(
n−k
m

)
ways to choose all m items from {k + 1, . . . , n},

while there are k
(

n−k
m−1

)
ways to choose one item from {1, . . . , k} and the remaining m− 1 items from

{k + 1, . . . , n}. Subtracting these possibilities from the answer in part (a) yields the answer.]

Solution 2:
∑k

j=2

(
k
j

)(
n−k
m−j

)
. [An m-subset of {1, . . . , n} consisting of at least two items from

{1, . . . , k} can be constructed by choosing j items from {1, . . . , k} and m − j items from {k +
1, . . . , n}, where j = 2, . . . , n. There are

(
k
j

)
ways to choose j items from {1, . . . , k}, and for each

of these choices, there are
(

n−k
m−j

)
ways to choose m− j items from {k + 1, . . . , n}. The subsets con-

structed in this way for different values of j cannot be the same, so the answer is obtained by summing(
k
j

)(
n−k
m−j

)
over j = 2, . . . , n.]

(d) Let A and B denote the answers to parts (a) and (b), respectively. If we let Ii denote the event that 5pts
item i is included when m distinct items are chosen from W , note that B = |I1 ∩ · · · ∩ Ik|. Fill
in the blank in the following equation to produce a valid combinatorial identity, and provide a brief
justification below that equation. Your justification should include a mathematical expression in
terms of the Ii’s for what the right hand side of the equation is counting.

A−B =
k∑

j=1

(−1)j−1

(
k

j

)(
n− j

m

)
.

Let Ω denote the set of all m-subsets of {1, 2, . . . , n}. Since A = |Ω| and B = |I1 ∩ · · · ∩ Ik|, we
have A−B = |I1 ∩ · · · ∩ Ik| = |I1 ∪ · · · ∪ Ik|, where the second equality follows from De Morgan’s
Laws. Let S be a j-subset of {1, . . . , k} where 1 ≤ j ≤ k. Then, |

⋂
i∈S Ii| =

(
n−j
m

)
. Furthermore,

there are
(
k
j

)
distinct j-subsets of {1, . . . , k}. Hence, the inclusion-exclusion formula yields

|I1 ∪ · · · ∪ Ik| =
k∑

j=1

(−1)j−1
∑

S⊆{1,...,k}:|S|=j

∣∣⋂
i∈SIi

∣∣ =
k∑

j=1

(−1)j−1

(
k

j

)(
n− j

m

)
.

[exam continued on next page]
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5. Balls and Bins [Total of 14 points.]

Suppose k balls are thrown independently and uniformly at random into n labeled bins. For i = 1, . . . , n,
let Ei denote the event that bin i is empty. (NOTE: Your answers should not involve any summation signs.)

(a) Find P[E1]. Write your answer in the box; no justification required. 3pts(
1− 1

n

)k. [Each ball has probability 1− 1
n of missing bin 1, so P[E1] = P[∩k

i=1(ball i misses bin 1)] =(
1− 1

n

)k, by independence. Alternatively, there are nk ways to assign labeled balls 1, . . . , k to labeled

bins 1, . . . , n, and (n−1)k ways to assign the balls to bins 2, . . . , n. So, P[E1] = (n−1)k

nk =
(
1− 1

n

)k
.]

(b) Find P[E1 ∩ E2]. Write your answer in the box; no justification required. 3pts(
1 − 1

n

)k −
(
1 − 2

n

)k. [Note that P[E1 ∩ E2] = P[E1] − P[E1 ∩ E2]. From part (a), we have

P[E1] =
(
1 − 1

n

)k. Each ball has probability 1 − 2
n of missing both bins 1 and 2, so P[E1 ∩ E2] =

P[∩k
i=1(ball i misses bins 1 and 2)] =

(
1 − 2

n

)k, by independence. Alternatively, since there are
(n−2)k ways to assign labeled balls 1, . . . , k to labeled bin 3, . . . , n, we again conclude P[E1∩E2] =
(n−2)k

nk =
(
1− 2

n

)k
.]

NOTE: For the remaining parts, let p and q denote the probabilities found in parts (a) and (b),
respectively. Express your answers to parts (c) and (d) in terms of some or all of n, p, and q.

(c) For this part, assume k ≥ n. Apply the union bound to P[at least one bin is empty] and use this result 4pts
to find a lower bound on P[no bin is empty]. Write your answer in the box; no justification required.
(Hint: Express the event “at least one bin is empty” in terms of E1, . . . , En.)

P[no bin is empty] ≥ 1− np.

[We have P[no bin is empty] = 1 − P[at least one bin is empty], while P[at least one bin is empty] =
P[E1 ∪ · · · ∪ En]. Since P[Ei] = p for all i = 1, . . . , n, the union bound yields P[E1 ∪ · · · ∪ En] ≤∑n

i=1 P[Ei] = np. Therefore, P[no bin is empty] = 1− P[E1 ∪ · · · ∪ En] ≥ 1− np.

(d) Suppose the n bins are arranged in a circle. A contiguous set of empty bins flanked by non-empty bins 4pts
is called a gap. Below is an example for k = 10 and n = 12 with G = 3 gaps: {2, 3}, {6, 7, 8}, and
{12}. Find the expectation E[G], where G denotes the number of gaps. Write your final answer in the
box provided, and give a brief justification in the space to the right of the figure.

1
2

3

4

5

6
7

8

9

10

11

12

E[G] = nq. Let Ω denote the sample space and, for ease of notation, let bin n + 1 correspond to
bin 1. Then, for i = 1, . . . , n, define an indicator random variable Ii such that Ii(ω) = 1 if bin i is
empty and bin i+1 is non-empty in ω ∈ Ω. Then, G = I1 + · · ·+ In, and, by linearity of expectation,
E[G] = E[I1 + · · · + In] =

∑n
i=1 E[Ii]. Noting E[Ii] = P[Ii = 1] = P[Ei ∩ Ei+1] = q for all

i = 1, . . . , n, we obtain E[G] = nq.
[exam continued on next page]
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6. Random Permutations [Total of 17 points.]

Suppose a permutation is sampled uniformly at random from the set of all permutations of {1, . . . , n}. Let
Ω denote the sample space, and for i = 1, . . . , n, let Xi be random variables such that Xi(ω) ∈ {1, . . . , n}
denotes the number that i maps to under permutation ω ∈ Ω. (NOTE: Your answers should not involve any
summation signs.)

(a) What is the cardinality of Ω? Write your answer in the box; no justification required. 2pts
n!

(b) Find P[X1 = 2, X2 = 1]. Write your answer in the box; no justification required. 3pts
(n−2)!

n! = 1
n(n−1) . [The number of permutations ω ∈ Ω with X1(ω) = 2 and X2(ω) = 1 is (n− 2)!,

so P[X1 = 2, X2 = 1] = (n−2)!
|Ω| = (n−2)!

n! = 1
n(n−1) .]

(c) Find P[X1 = 2, X2 6= 1]. Write your answer in the box; no justification required. 3pts
(n−1)!−(n−2)!

n! = 1
n −

1
n(n−1) . [The number of permutations ω ∈ Ω with X1(ω) = 2 is (n − 1)!,

so P[X1 = 2] = (n−1)!
n! . Hence, combining this result with the answer from part (b), we obtain

P[X1 = 2, X2 6= 1] = P[X1 = 2]−P[X1 = 2, X2 = 1] = (n−1)!−(n−2)!
n! = 1

n−
1

n(n−1) . Alternatively,
if X2 6= 1 and X2 6= 2 (since X1 = 2), there are (n−2) options for X2, and then (n−2)! possibilities
for X3, . . . , Xn, giving a total of (n − 2) · (n − 2)! permutations of interest. Therefore, we have
P[X1 = 2, X2 6= 1] = (n−2)·(n−2)!

n! = [(n−1)−1](n−2)!
n! = (n−1)!−(n−2)!

n! . ]

(d) Find P[X1 < X2 − 1]. Write your final answer in the box below, and show your work in the 5pts
space provided. (Hint: Use the Total Probability Rule. Also, recall from earlier in the course that∑m

i=1 i = m(m+1)
2 .)

The answer is 1
2 −

1
n , which can be derived as follows:

P[X1 < X2 − 1] =
n∑

k=1

P[X1 < X2 − 1 | X2 = k] P[X2 = k]

=
n∑

k=3

k − 2
n− 1

(
1
n

)

=
1

n(n− 1)

n−2∑
i=1

i =
1

n(n− 1)
(n− 2)(n− 1)

2
=

n− 2
2n

=
1
2
− 1

n
,

where in the second equality we have used P[X1 < X2−1 | X2 = 1] = P[X1 < X2−1 | X2 = 2] = 0,
P[X1 < X2− 1 | X2 = k] = k−2

n−1 for k = 3, . . . , n, and P[X2 = k] = 1
n for all k. Alternatively, there

are n!/2 permutations in which X1 < X2. From these we can subtract the (n − 1)! permutations for
which X1 = X2 − 1, giving a probability of P[X1 < X2 − 1] = 1

n!

[
n!
2 − (n− 1)!

]
= 1

2 −
1
n .

(e) Let p denote the probability found in part (c), and let Dn denote the number of derangements of 4pts
{1, . . . , n}. Consider the event ∆ that the sampled permutation is a derangement. Find
P[∆ | X1 = 2, X2 6= 1] in terms of p, n, and Dk for a suitable k. Write your final answer in the
box below; no justification required.
Dn−1

n! p . [As discussed in the proof of Theorem 11.2 in Note 11, the number of derangements with

X1 = 2 and X2 6= 1 is Dn−1, so P[∆, X1 = 2, X2 6= 1] = Dn−1

n! . Therefore,

P[∆ | X1 = 2, X2 6= 1] =
P[∆, X1 = 2, X2 6= 1]

P[X1 = 2, X2 6= 1]
=

Dn−1

n! · p
,

which is equal to Dn−1

(n−1)!−(n−2)! .]

[End of Exam!]


