
CS 70 Discrete Mathematics and Probability Theory
Spring 2021 DIS 10B

1 Variance
(a) Let X be a random variable representing the outcome of the roll of one fair 6-sided die. What

is Var(X)?

(b) Let Z be a random variable representing the average of n rolls of a fair die 6-sided die. What
is Var(Z)?

(c) A building has n floors numbered 1,2, . . . ,n, plus a ground floor G. At the ground floor, m
people get on the elevator together, and each gets off at a uniformly random one of the n floors
(independently of everybody else). What is the variance of the number of floors the elevator
does not stop at? (In fact, the variance of the number of floors the elevator does stop at must
be the same (make sure you understand why), but the former is a little easier to compute.)

Solution:

(a) Recall that Var(X) = E
[
X2]−E[X ]2. We can compute each of the individual terms using the

definition of expectation:

E[X ] =
1
6
(1+2+3+4+5+6) =

7
2

E
[
X2]= 1

6
(
12 +22 +32 +42 +52 +62)

=
1
6
(1+4+9+16+25+36) =

91
6

Now, we plug back into the variance expression:

Var(X) = E
[
X2]−E[X ]2

=
91
6
−
(

7
2

)2

=
35
12

(b) Because each dice roll is independent of the others, we can utilize the fact that for independent
random variables X and Y , Var(X +Y ) = Var(X) + Var(Y ). Let Xi be a random variable
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representing the outcome of the ith dice roll. We now have:

Var(Z) = Var

(
1
n

n

∑
i=1

Xi

)

=

(
1
n

)2

Var

(
n

∑
i=1

Xi

)

=

(
1
n

)2 n

∑
i=1

Var(Xi) All Xi’s are independent.

=

(
1
n

)2 n

∑
i=1

35
12

We computed the variance of one roll in part (a).

=

(
1
n

)2

·n · 35
12

=
35

12n

(c) Let X be the number of floors the elevator does not stop at. We can represent X as the sum of
the indicator variables X1, . . . ,Xn, where Xi = 1 if no one gets off on floor i. Thus, we have

E[Xi] = P[Xi = 1] =
(n−1

n

)m
,

and from linearity of expectation,

E[X ] =
n

∑
i=1

E[Xi] = n
(n−1

n

)m
.

To find the variance, we cannot simply sum the variance of our indicator variables. However,
we can still compute Var(X) = E[X2]−E[X ]2 directly using linearity of expectation, but now
how can we find E[X2]? Recall that

E[X2] = E[(X1 + · · ·+Xn)
2] = E

[
∑
i, j

XiX j

]
= ∑

i, j
E[XiX j] =

n

∑
i
E[X2

i ]+∑
i 6= j

E[XiX j].

The first term is simple to calculate - Note that the squared expectation of an indicator is still
just P[X = 1].

E[X2
i ] = 12P[Xi = 1] =

(n−1
n

)m
,

There are n terms in our summation. Thus,
n

∑
i=1

E
[
X2

i
]
= n
(n−1

n

)m
.

Next, XiX j = 1 when both Xi and X j are 1, which means no one gets off the elevator on floor i
and floor j. This happens with probability

P[Xi = X j = 1] = P[Xi = 1∩X j = 1] =
(n−2

n

)m
.
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There are n(n-1) terms in our summation. You could count this with order, directly seeing

that there are n options for i and then n-1 options for j. Or, unordered you can see
(

n
2

)
, then

multiply by 2 since each XiX j term shows up twice. Verify for yourself why this is the case.
(How many cross terms are in (x1 + x2 + x3)

2 ?) Thus,

∑
i 6= j

E[XiX j] = n(n−1)
(n−2

n

)m
.

Finally, we plug in to see that

Var(X) = E[X2]−E[X ]2 = n
(n−1

n

)m
+n(n−1)

(n−2
n

)m
−n2

(n−1
n

)2m
.

2 Inequality Practice
(a) X is a random variable such that X >−5 and E[X ] =−3. Find an upper bound for the proba-

bility of X being greater than or equal to −1.

(b) Y is a random variable such that Y < 10 and E[Y ] = 1. Find an upper bound for the probability
of Y being less than or equal to −1.

(c) You roll a die 100 times. Let Z be the sum of the numbers that appear on the die throughout
the 100 rolls. Compute Var(Z). Then use Chebyshev’s inequality to bound the probability of
the sum Z being greater than 400 or less than 300.

Solution:

(a) We want to use Markov’s Inequality, but recall that Markov’s Inequality only works with non-
negative random variables. So, we define a new random variable X̃ = X +5, where X̃ is always
non-negative, so we can use Markov’s on X̃ . By linearity of expectation, E[X̃ ] =−3+5 = 2.
So, P[X̃ ≥ 4]≤ 2/4 = 1/2.

(b) We again use Markov’s Inequality. Similarly, define Ỹ = −Y + 10, and E[Ỹ ] = −1+ 10 = 9.
P[Y ≤−1] = P[−Y ≥ 1] = P[−Y +10≥ 11]≤ 9/11.

(c) Let Zi be the number on the die for the ith roll, for i = 1, . . . ,100. Then, Z = ∑
100
i=1 Zi. By

linearity of expectation, E[Z] = ∑
100
i=1E[Zi].

E[Zi] =
6

∑
j=1

j ·P[Zi = j] =
6

∑
j=1

j · 1
6
=

1
6
·

6

∑
j=1

j =
1
6
·21 =

7
2

Then, we have E[Z] = 100 · (7/2) = 350.

E[Z2
i ] =

6

∑
j=1

j2 ·P[Zi = j] =
6

∑
j=1

j2 · 1
6
=

1
6
·

6

∑
j=1

j2 =
1
6
·91 =

91
6
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Then, we have

Var(Zi) = E[Z2
i ]−E[Zi]

2 =
91
6
−
(7

2

)2
=

35
12

,

Since the Zis are independent, and therefore uncorrelated, we can add the Var(Zi)s to get
Var(Z) = 100(35/12).

Finally, we note that we can upper bound P[|Z−350|> 50] with P[|Z−350| ≥ 50].

Putting it all together, we use Chebyshev’s to get

P[|Z−350|> 50]< P[|Z−350| ≥ 50]≤ 100(35/12)
502 =

7
60

.

3 Working with the Law of Large Numbers
(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads.

Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads.
Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60%
heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which
number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

Solution:

(a) 10 tosses. By LLN, the sample mean should have higher probability to be close to the pop-
ulation mean as n increases. Therefore the average proportion of coins that are heads should
be closer to 0.50, and has a lower chance of being greater than 0.60 if there are 100 tosses
(compared with 10 tosses).

(b) 100 tosses. Again, by LLN, the sample mean should have higher probability to be close to
the population mean as n increases. Therefore the average proportion of coins that are heads
should be closer to 0.50, and has a lower chance of being smaller than 0.40 if there are 100
tosses. A lower chance of being smaller than 0.40 is the desired result.

(c) 100 tosses. Again, by LLN, the average proportion of coins that are heads should be closer to
0.50, and has a lower chance of being both smaller than 0.40 if there are 100 tosses. Similarly,
there is a lower chance of being larger than 0.60 if there are 100 tosses. Lower chances of both
of these events is desired if we want the fraction of heads to be between 0.4 and 0.6.
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(d) 10 tosses. Compare the probability of getting equal number of heads and tails between 2n and
2n+2 tosses.

P[n heads in 2n tosses] =
(

2n
n

)
1

22n

P[n+1 heads in 2n+2 tosses] =
(

2n+2
n+1

)
1

22n+2 =
(2n+2)!

(n+1)!(n+1)!
· 1

22n+2

=
(2n+2)(2n+1)2n!
(n+1)(n+1)n!n!

· 1
22n+2

=
2n+2
n+1

· 2n+1
n+1

(
2n
n

)
· 1

22n+2 <

(
2n+2
n+1

)2(2n
n

)
· 1

22n+2

= 4
(

2n
n

)
· 1

22n+2 =

(
2n
n

)
1

22n = P[n heads in 2n tosses]

As we increment n, the probability will always decrease. Therefore, the larger n is, the less
probability we’ll get exactly 50% heads. 2

Note: By Stirling’s approximation,
(2n

n

)
2−2n is roughly (πn)−1/2 for large n.

See https://github.com/dingyiming0427/CS70-demo/ for a code demo.
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