
CS 70 Discrete Mathematics and Probability Theory
Spring 2021 HW 2

1 Stable Matching for Classes!
Let’s consider the system for getting into classes. For simplicity, we will start with the problem
assigning students to lab sections first, since it is clear that there are a finite number of seats. We
are given n students and m lab sections. Each lab section ` has some number, q` of seats, and we
assume that the total number of students is larger than the total number of seats (i.e. ∑

m
`=1 q` < n)

and so some students are going to end up with no lab. Each student ranks the m lab sections in
order of preference, and the instructor for each lab ranks the n students. Our goal is to find an
assignment of students to seats (one student per seat) that is stable in the following sense:

• There is no student-lab pair (s, `) such that s prefers ` to her allocated lab section and the
instructor for ` prefers s to one of the students assigned to `. (This is like the stability
criterion you have seen for jobs: it says there is no student-lab pair that would induce that lab
instructor to kick out an existing student and take this new student instead.)

• There is no lab section ` for which the instructor prefers some unassigned student s to one of
the students assigned to `. (This extends the stability criterion to take account of the fact that
some students are not assigned to labs.)

Note that this problem is almost the same as the Stable Matching problem for jobs/internships
presented in the lecture note, with two differences: (i) there are more students than seats; and (ii)
each lab section can have more than one seat.

Perhaps you will agree that this extended model is more realistic, even for the jobs context!

(a) Explain how to modify the propose-and-reject algorithm so that it finds a stable assignment of
students to seats. [Hint: What roles of students/instructors will be in the propose-and-reject
algorithm? What does “candidates have a job offer in hand (on a string)” mean in this setting?]

(b) State a version of the Improvement Lemma (see the Stable Matchings Lecture Note) that ap-
plies to your algorithm, and prove that it holds.

(c) Use your Improvement Lemma to give a proof that your algorithm terminates, that every seat
is filled, and that the assignment your algorithm returns is stable.

(d) Let us consider the potential of a pair of students wishing to swap lab sections, subject to global
stability (i.e. the swap can’t make the matching as a whole unstable). Either prove that your
algorithm will not have any such swap requests or modify it to have no such swap requests and
prove that the modified one will not have any pair of student wanting to stably-swap sections.
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Solution:

(a) We will extend the propose-and-reject algorithm given in the lecture notes. Students will play
the role of jobs and discussion section instructors will play the role of candidates. Instead of
keeping a single person as in the original algorithm, each discussion section instructor will
keep a waitlist of size equal to its quota.

Note that there are other valid ways to modify the propose-and-reject algorithm such that a
stable assignment is produced. One way is to have the instructors playing the role of jobs
and the students playing the role of candidates, with the difference that now we have jobs
proposing to up to qu candidates each day. It is also possible to “expand” each instructor by
the size of his or her quota by making qu copies of instructor u and adding empty discussions
for the unassigned students.

The extended procedure for students proposing and instructors keeping a waitlist works as
follows:

• All students apply to their first-choice discussion section.

• Each discussion section u with a quota of qu, then places on its waitlist the qu applicants
who rank highest (or all the applicants if there are fewer than qu of them) and rejects all
the rest.

• Rejected applicants then apply to their second-choice discussion section, and again each
discussion section instructor u selects the top qu students from among the new applicants
AND those on its waitlist; it puts the selected students on its new waitlist, and rejects the
rest of its applicants (including those who were previously on its waitlist but now are not).

• The above procedure is repeated until every applicant is either on a waitlist or has been
rejected from every discussion section. At this point, each discussion section admits
everyone on its waitlist.

(b) Improvement Lemma: Assume that discussion sections maintain their waitlist in decreasing
order of their preference for the students on the lists. Let ⊕ be the “null” element, which we
will use as a placeholder in waitlist positions not yet assigned to a student. For any discussion
section u, let qu be its quota and let sk

i ∈ {Students}∪{⊕} be the student in the i’th position on
the waitlist after the k’th round of the algorithm. (If there are fewer than qu students on the list,
we fill the bottom of the list with ⊕’s.) Then for all i and k, the discussion section instructor
likes sk+1

i at least as much as sk
i . (Here we assume that the discussion section instructor prefers

any student to no student.)

In short, the lemma says that no position in the list ever gets worse for the discussion sec-
tion instructor as the algorithm proceeds. As in the Lecture Notes, we use the Well-Ordering
Principle and prove the lemma by contradiction:

Suppose that the jth day, where j > k, is the first counterexample where, for index i ≤ qu,
discussion section u, has either nobody or some student ŝ inferior to sk

i . Then on day j−1, the
instructor has some student s̃ on a string that they like at least as much as sk

i . Following the
algorithm, s̃ still “proposes” to the instructor of section u on day j since they said “maybe” the
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previous day. Therefore, the instructor has the choice of at least one student on the jth day,
and his or her best option is at least as good as s̃, so the instructor would have chosen s̃ over ŝ.
Therefore on day j, the instructor does have a student that they like at least as much as sk

i in
waitlist position i≤ qu. This contradicts our initial assumption.

(c) First, the algorithm terminates. This follows by similar reasoning to the original propose-and-
reject algorithm: in each round (except the last), at least one discussion section is crossed off
the list of some rejected students.

Second, every seat is filled. Suppose some discussion section u has an unfilled seat at the end.
Then the total number of students who applied to u must have been fewer than its quota qu
(since the Improvement Lemma in Part (b) ensures that a waitlist slot, once filled, will never
later be unfilled). But the only students who do not apply to u are those who find a slot in
some other discussion section. And since we are told that there are more students than seats,
the number of students applying to u must be at least qu.

Finally, the assignment is stable:

• Suppose there is a student-section pair (s,u) such that s prefers u to her discussion section
u′ in the final allocation. Then s must have proposed to u prior to proposing to u′, and
was rejected by u. Thus immediately after rejecting s, u must have had a full waitlist
in which every student was preferred to s. By the Improvement Lemma, the same holds
at all future times and hence at the end. Thus u does not prefer s to any of its assigned
students, as required.

• Suppose s is a student left unassigned at the end. Consider any discussion section u. Since
s must have applied to and have been rejected from all discussion sections, this holds
in particular for u. Reasoning similar as in the previous case, using the Improvement
Lemma, we see that in the final allocation, u prefers all its students to s. Therefore u does
not prefer s to any of its assigned students, as required.

This concludes the proof that our algorithm finds a stable assignment when terminates.

(d) The intuition here is that the group proposing in the Propose-and-Reject algorithm is the group
for which the resulting stable matchings are optimal. We proceed with a proof.

Assume that there is a pair (s,u) and a pair (s′,u′) such that s′ prefers u to u′ and s prefers u′ to
u. If this is the case, then s must have proposed to u′ before u, and gotten rejected, and s′ must
have proposed to u before u′, and gotten rejected.

Without loss of generality, assume s was rejected first.

If u′ rejected any student, s′′ that it prefers to s throughout the algorithm, then if s and s′ swap,
s” and u′ would become a rogue pair which means swapping makes for an unstable pairing and
we are done.

Thus, we can assume u′ never rejects any student it prefers to s. This and the fact that everyone
on u′’s waitlist was preferred to s when s was rejected by u′, implies that the waitlist for u′ on
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that day must be the exact students that are in u′ wailtist at the end of the algorithm. Thus, s′

must be on u′’s waitlist at that time and therefore must have been rejected by u previously.

This contradicts the assumption that s was rejected first. Thus, switching the pairs creates an
unstable matching.

2 Pairing Up
Prove that for every even n≥ 2, there exists an instance of the stable matching problem with n jobs
and n candidates such that the instance has at least 2n/2 distinct stable matchings.

Solution:

To prove that there exists such a stable matching instance for any even n≥ 2, we just need to show
how to construct such an instance.

The idea here is that we can create pairs of jobs and pairs of candidates: pair up job 2k−1 and 2k
into a pair and candidate 2k− 1 and 2k into a pair, for 1 ≤ k ≤ n/2 (you might come to this idea
since we are asked to prove this for even n).

For n, we have n/2 pairs. Choose the preference lists such that the kth pair of jobs rank the kth pair
of candidates just higher than the (k+1)th pair of candidates (the pairs wrap around from the last
pair to the first pair), and the kth pair of candidates rank the kth pair of jobs just higher than the
(k+1)th pair of jobs. Within each pair of pairs ( j, j′) and (c,c′), let j prefer c, let j′ prefer c′, let
c prefer j′, and let c′ prefer j.

Each match will have jobs in the kth pair paired to candidates in the kth pair for 1≤ k ≤ n/2.

A job j in pair k will never form a rogue couple with any candidate c in pair m 6= k. If m > k, then
c prefers her current partner in the kth pair to j. If m < k, then j prefers its current partner in the
kth pair to c. Then a rogue couple could only exist in the same pair - but this is impossible since
exactly one of either j or c must be matched to their preferred choice in the pair.

Since each job in pair k can be stably matched to either candidate in pair k, and there are n/2 total
pairs, the number of stable matchings is 2n/2.

3 A Better Stable Pairing
In this problem we examine a simple way to merge two different solutions to a stable matching
problem. Let R, R′ be two distinct stable pairings. Define the new pairing R∧R′ as follows:

For every job j, j’s partner in R∧R′ is whichever is better (according to j’s preference
list) of their partners in R and R′.

Also, we will say that a job/candidate prefers a pairing R to a pairing R′ if they prefers their partner
in R to their partner in R′. We will use the following example:
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jobs preferences candidates preferences
A 1>2>3>4 1 D>C>B>A
B 2>1>4>3 2 C>D>A>B
C 3>4>1>2 3 B>A>D>C
D 4>3>2>1 4 A>B>D>C

(a) R = {(A,4),(B,3),(C,1),(D,2)} and R′ = {(A,3),(B,4),(C,2),(D,1)} are stable pairings for
the example given above. Calculate R∧R′ and show that it is also stable.

(b) Prove that, for any pairings R, R′, no job prefers R or R′ to R∧R′.

(c) Prove that, for any stable pairings R, R′ where j and c are partners in R but not in R′, one of the
following holds:

• j prefers R to R′ and c prefers R′ to R; or
• j prefers R′ to R and c prefers R to R′.

[Hint: Let J and C denote the sets of jobs and candidates respectively that prefer R to R′, and
J′ and C′ the sets of jobs and candidates that prefer R′ to R. Note that |J|+ |J′| = |C|+ |C′|.
(Why is this?) Show that |J| ≤ |C′| and that |J′| ≤ |C|. Deduce that |J′| = |C| and |J| = |C′|.
The claim should now follow quite easily.]

(You may assume this result in the next part even if you don’t prove it here.)

(d) Prove an interesting result: for any stable pairings R, R′, (i) R∧R′ is a pairing [Hint: use the
results from (c)], and (ii) it is also stable.

Solution:

(a) R∧R′ = {(A,3),(B,4),(C,1),(D,2)}. This pairing can be seen to be stable by considering
the different combinations of jobs and candidates. For instance, A prefers 2 to their current
partner 3. However, 2 prefers her current partner D to A. Similarly, A prefers 1 the most, but 1
prefers her current partner C to A. We can prove the stability of this pairing by considering the
remaining pairs like this.

(b) Let j be a job, and let their partners in R and R′ be c and c′ respectively, and without loss of
generality, let c > c′ in j’s list. Then their partner in R∧R′ is c, whom they prefer over c′.
However, for j to prefer R or R′ over R∧R′, j must prefer c or c′ over c, which is not possible
(since c > c′ in their list).

(c) Let J and C denote the sets of jobs and candidates respectively that prefer R to R′, and J′ and
C′ the sets of jobs and candidates that prefer R′ to R. Note that |J|+ |J′|= |C|+ |C′|, since the
left-hand side is the number of jobs who have different partners in the two pairings, and the
right-hand side is the number of candidates who have different partners.

Now, in R there cannot be a pair ( j,c) such that j ∈ J and c ∈ C, since this will be a rogue
couple in R′. Hence the partner in R of every jobs in J must lie in C′, and hence |J| ≤ |C′|. A
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similar argument shows that every jobs in J′ must have a partner in R′ who lies in C, and hence
|J′| ≤ |C|.
Since |J|+ |J′| = |C|+ |C′|, both these inequalities must actually be tight, and hence we have
|J′|= |C| and |J|= |C′|. The result is now immediate: if the jobs j is partners with the candidate
c in one but not both pairings, then

• either j ∈ J and c ∈C′, i.e., j prefers R to R′ and c prefers R′ to R,

• or j ∈ J′ and c ∈C, i.e., j prefers R′ to R and c prefers R to R′.

(d) (i) If R∧R′ is not a pairing, then it is because two jobs get the same candidate, or two candidates
get the same job. Without loss of generality, assume it is the former case, with ( j,c) ∈ R and
( j′,c) ∈ R′ causing the problem. Hence j prefers R to R′, and j′ prefers R′ to R. Using
the results of the previous part would imply that c would prefer R′ over R, and R over R′

respectively, which is a contradiction.

(ii) Now suppose R∧R′ has a rogue couple ( j,c). Then j strictly prefers c to their partners in
both R and R′. Further, c prefers j to her partner in R∧R′. Let c’s partners in R and R′ be j1
and j2. If she is finally matched to j1, then ( j,c) is a rogue couple in R; on the other hand, if
she is matched to j2, then ( j,c) is a rogue couple in R′. Since these are the only two choices
for c’s partner, we have a contradiction in either case.

4 Graph Basics
In the first few parts, you will be answering questions on the following graph G.

(a) What are the vertex and edge sets V and E for graph G?

(b) Which vertex has the highest in-degree? Which vertex has the lowest in-degree? Which ver-
tices have the same in-degree and out-degree?

(c) What are the paths from vertex B to F , assuming no vertex is visited twice? Which one is the
shortest path?

(d) Which of the following are cycles in G?
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i. (B,C),(C,D),(D,B)

ii. (F,G),(G,F)

iii. (A,B),(B,C),(C,D),(D,B)

iv. (B,C),(C,D),(D,H),(H,G),(G,F),(F,E),(E,D),(D,B)

(e) Which of the following are walks in G?

i. (E,G)

ii. (E,G),(G,F)

iii. (F,G),(G,F)

iv. (A,B),(B,C),(C,D),(H,G)

v. (E,G),(G,F),(F,G),(G,C)

vi. (E,D),(D,B),(B,E),(E,D),(D,H),(H,G),(G,F)

(f) Which of the following are tours in G?

i. (E,G)

ii. (E,G),(G,F)

iii. (F,G),(G,F)

iv. (E,D),(D,B),(B,E),(E,D),(D,H),(H,G),(G,F)

v. (B,C),(C,D),(D,H),(H,G),(G,F),(F,E),(E,D),(D,B)

In the following three parts, let’s consider a general undirected graph G with n vertices
(n≥ 3). If true, provide a short proof. If false, show a counterexample.

(g) True/False: If each vertex of G has degree at most 1, then G does not have a cycle.

(h) True/False: If each vertex of G has degree at least 2, then G has a cycle.

(i) True/False: If each vertex of G has degree at most 2, then G is not connected.

Solution:

(a) A graph is specified as an ordered pair G = (V,E), where V is the vertex set and E is the edge
set.

V = {A,B,C,D,E,F,G,H},
E = {(A,B),(A,F),(B,C),(B,E),(C,D),(D,B),(D,H),(E,D),(E,G),(F,E),(F,G),(G,F),

(H,G)}.

(b) G has the highest in-degree (3). A has the lowest in-degree (0).

{B,C,D,E,F,H} all have the same in-degree and out-degree. H and C has in-degree (out-
degree) equal to 1 and the other four have in-degree (out-degree) equal to 2.
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(c) There are three paths:
(B,C),(C,D),(D,H),(H,G),(G,F)
(B,E),(E,D),(D,H),(H,G),(G,F)
(B,E),(E,G),(G,F)
The first two have length 5, while the last one has length 3, so the last one is the shortest path.

(d) A cycle is a path that starts and ends at the same point. This means that (iii) is not a cy-
cle, since it starts at A but ends at B. In addition, all the vertices {v1, . . . ,vn} in the cycle
(v1,v2),(v2,v3), . . . ,(vn−1,vn) should be distinct, so (iv) is not a cycle. The correct answers are
(i) and (ii).

(e) A walk consists of any sequence of edges such that the endpoint of each edge is the same as the
starting vertex of the next edge in the sequence. Example (iv) does not fit this definition–even
though it uses only valid edges, the endpoint of the second to last edge in D, while the start
point of the next edge is H. Example (v) also is not a walk, since it tries to walk from G to C
as its last step, but there is no such edge. All the rest are walks.

(f) A tour is a walk that has the same start and end vertex; examples (iii) and (v) satisfy this
definition. Note in part (d), we already said that (iii) was a cycle–and indeed, all cycles are
also tours.

(g) True. In order for there to be a cycle in G starting and ending at some vertex v, we would need
at least two edges incident to v: one to leave v at the start of the cycle, and one to return to v at
the end. If every vertex has degree at most 1, no vertex has two or more edges incident on it,
so no vertex is capable of acting as the start and end point of a cycle.

(h) True. Consider starting a walk at some vertex v0, and at each step, walking along a previously
untraversed edge, stopping when we first visit some vertex w for the second time. If this
process terminates, the part of our walk from the first time we visited w until the second time
is a cycle. Thus, it remains only to argue this process always terminates.

Each time we take a step from some vertex v, since we are not stopping, we must have visited
that vertex exactly once and not yet left. It follows that we have used at most one edge incident
with v (either we started at v, or we took an edge into v). Since v has degree at least 2, there
must be another edge leaving v for us to take.

(i) False. For example, a 3-cycle (triangle) is connected and every vertex has degree 2.

5 Proofs in Graphs
Please prove or disprove the following claims.

(a) On the axis from San Francisco traffic habits to Los Angeles traffic habits, Old California is
more towards San Francisco: that is, civilized. In Old California, all roads were one way
streets. Suppose Old California had n cities (n≥ 2) such that for every pair of cities X and Y ,
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either X had a road to Y or Y had a road to X . Prove or disprove that there existed a city which
was reachable from every other city by traveling through at most 2 roads.

[Hint: Induction]

(b) In lecture, we have shown that a connected undirected graph has an Eulerian tour if and only
if every vertex has even degree.

Consider a connected graph G with n vertices which has exactly 2m vertices of odd degree,
where m > 0. Prove or disprove that there are m walks that together cover all the edges of G
(i.e., each edge of G occurs in exactly one of the m walks, and each of the walks should not
contain any particular edge more than once).

Solution:

(a) We prove this by induction on the number of cities n.

Base case For n = 2, there’s always a road from one city to the other.

Inductive Hypothesis When there are k cities, there exists a city c that is reachable from every
other city by traveling through at most 2 roads.

Inductive Step Consider the case where there are k+1 cities. Remove one of the cities d and
all of the roads to and from d. Now there are k cities, and by our inductive hypothesis,
there exists some city c which is reachable from every other city by traveling through at
most 2 roads. Let A be the set of cities with a road to c, and B be the set of cities two
roads away from c. The inductive hypothesis states that the set S of the k cities consists
of S = {c}∪A∪B.
Now add back d and all roads to and from d. Between d and every city in S, there must be
a road from one to the other. If there is at least one road from d to {c}∪A, c would still
be reachable from d with at most 2 road traversals. Otherwise, if all roads from {c}∪A
point to d, d will be reachable from every city in B with at most 2 road traversals, because
every city in B can take one road to go to a city in A, then take one more road to go to d.
In either case there exists a city in the new set of k+1 cities that is reachable from every
other city by traveling at most 2 roads.

(b) We split the 2m odd-degree vertices into m pairs, and join each pair with an edge, adding m
more edges in total. (Here, we allow for the possibility of multi-edges, that is, pairs of vertices
with more than one edge between them.) Notice that now all vertices in this graph are of even
degree. Now by Euler’s theorem the resulting graph has an Eulerian tour. Removing the m
added edges breaks the tour into m walks covering all the edges in the original graph, with
each edge belonging to exactly one walk.
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