"Theorem": All students love CS70.

"Proof": Let $P(n)$ be "given a set of n students, they all love CS70".

Base case: $P(0)$ is trivially true.

Inductive step:
Assume $P(n)$ is true. Suppose we're given a set of students $\{S_1, S_2, ..., S_n, S_{n+1}\}$.

By inductive hypothesis, students in $\{S_1, ..., S_n\}$ all love CS70. Similarly, students in $\{S_2, ..., S_{n+1}\}$ all love CS70.

$\Rightarrow S_1, ..., S_{n+1}$ all love CS70.

By the principle of induction, since $P(0)$ is true and \(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)\), we know the statement is true.

Q: Do you agree? What's wrong?

$P(0) \not\Rightarrow P(1)$

So we didn't really prove "$\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$".
1. Induction

Induction is a technique for proving \(\forall n \in \mathbb{N} \), \(P(n) \).

1.1 Simple Induction

To prove \(P(n) \) is true for all \(n \in \mathbb{N} \), use

Base case: check \(P(0) \) holds

Inductive Step: Show \(P(k) \Rightarrow P(k+1) \) for all \(k \in \mathbb{N} \).

E.g. Prove that \(\sum_{j=0}^{n} a_j = \frac{ar^{n+1} - a}{r-1} \) where \(a, r \in \mathbb{R}, r \neq 1, n \in \mathbb{N} \).

Proof: Let \(P(n) \) be the statement \(\sum_{j=0}^{n} a_j = \frac{ar^{n+1} - a}{r-1} \).

Base case: \(P(0) \) holds, because \(\sum_{j=0}^{0} a_j = a = \frac{ar - a}{r-1} \).

Inductive step: \(\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1) \).

Inductive hypothesis: Assume \(P(k) \) is true, i.e. assume \(\sum_{j=0}^{k} a_j = \frac{ar^{k+1} - a}{r-1} \).

Want to show \(\sum_{j=0}^{k+1} a_j = \frac{ar^{k+2} - a}{r-1} \).

\[
\sum_{j=0}^{k+1} a_j = \sum_{j=0}^{k} a_j + a_{k+1}
\]

\[
= \frac{ar^{k+1} - a}{r-1} + a_{k+1}
\]

\[
= \frac{ar^{k+1} - a}{r-1} + \frac{ar^{k+2} - ar^{k+1}}{r-1}
\]

\[
= \frac{ar^{k+2} - a}{r-1}
\]

\(\Box \)
E.g. Prove that $2^n < n!$ for every integer $n \geq 4$.

Pf: Let $P(n)$ be the statement $2^n < n!$.

- **Base Case:** $P(4)$ holds, because $2^4 = 16 < 4! = 24$.
- **Inductive Step:** WTS $\forall k \in \mathbb{N}$, $k \geq 4$, $P(k) \Rightarrow P(k+1).

Assume $P(k)$, i.e. assume $2^k < k!$ for some integer $k \geq 4$.

Want to show $2^{k+1} < (k+1)! = k! (k+1)$.

Notice that

$$2^{k+1} = 2^k \times 2$$

$$< k! \times 2$$

$$< k! \times (k+1)$$

$$= (k+1)!$$

E.g. Prove a map with n lines is 2-colorable, where $n \in \mathbb{N}$.

Pf: Let $P(n)$ be the statement a map with n lines is 2-colorable.

- **Base Case:** $P(0)$ holds, because we can color the entire map using a single color.

- **Inductive Step:** WTS $\forall k \in \mathbb{N}$, $P(k) \Rightarrow P(k+1)$.

Assume $P(k)$, i.e. assume a map with k lines is
Given a map with $k+l$ lines, remove a line ℓ. Do it so that the new map is 2-colorable.

Consider a map with $k+l$ lines. By IH, the new map is 2-colorable.

Add line ℓ. Pick one side and swap the colors.

The result is still 2-colorable, because for each shared border, it's either ℓ or not ℓ.

1. If ℓ is not ℓ, two sides have different colors by IH.
2. If $\ell = \ell$, two sides now have different colors because of the swap.

Want to show a map with $k+l$ lines is 2-colorable.

Inductive Step: Assume the result holds for some $k \in \mathbb{Z}^+$, i.e., $\sum_{x=1}^{x=k} (2x-1) = m^2$ for some $m \in \mathbb{Z}^+$.

Want to show $\sum_{x=1}^{x=k+1} (2x-1) = n^2$ for some $n \in \mathbb{Z}^+$.

Proof: Let $P(k)$ be the statement $\sum_{x=1}^{x=k} (2x-1) = m^2$, for some $m \in \mathbb{Z}^+$.

E.g. Prove the sum of the first k odd numbers is a perfect square.

$$\sum_{x=1}^{x=k} (2x-1) = m^2$$
\[1=1, \quad 1+3=4=2^2, \quad 1+3+5=9=3^2, \quad \ldots \]

Let \(P(n) \) be the statement \(\sum_{x=1}^{n} (2x-1) = n^2 \).

Base case: \(P(1) \) holds because \(1 = 1^2 \).

Inductive Step: Assume \(\sum_{x=1}^{k} (2x-1) = k^2 \) for some \(k \in \mathbb{Z}^+ \).

Then \(\sum_{x=1}^{k+1} (2x-1) = \left(\sum_{x=1}^{k} (2x-1) \right) + 2k+1 \)

\[= k^2 + 2k + 1 \]

\[= (k+1)^2. \]

\[\square \]

1.2 Strong Induction

To prove \(P(n) \) is true for all \(n \in \mathbb{N} \), use

Base case: check \(P(0) \) holds.

Inductive Step: Show \(\forall k \in \mathbb{N}, \left[P(0) \land \ldots \land P(k) \right] \Rightarrow P(k+1) \).

E.g. Prove that if \(n \) is an integer greater than 1, then \(n \) can be written as a product of primes.

Pf:

Base case: \(2 \) is a prime and a product of itself, so the statement holds for \(n = 2 \).

Inductive Step: Assume all integers \(2 \leq j \leq k \) can be written as a product of primes.

Consider \(k+1 \). If \(k+1 \) is prime, we’re done.

Otherwise, \(k+1 = ab \) for some integers \(a, b \) with \(2 \leq a, b < k+1 \).
By IH, a·b can be written as a product of primes. Hence, k+1 can be written as a product of primes.

\[\forall n \geq 12, P(n). \]

E.g. Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Pf: Let \(P(n) \) be the statement \(n = 4x + 5y \) for some \(x, y \in \mathbb{N} \).

- **Base case:** \(P(12) \) is true \(12 = 4 \cdot 3 + 5 \cdot 0 \).
- \(P(13), P(14), P(15) \) holds because ...

- **Inductive step:** Assume \(P(n) \) holds for all \(12 \leq n \leq k \) for some \(k \geq 15 \).

Consider \(k+1 \)

- If \((k+1) - 4 = 4x + 5y \), \(k+1 = 4(x+1) + 5y \).
 - But need \((k+1) - 4 \geq 12 \), i.e. \(k \geq 15 \)
 - Since \((k+1) - 4 \geq 12 \), by IH, \((k+1) - 4 = 4x + 5y \) for \(x, y \in \mathbb{N} \), so \(k+1 = 4(x+1) + 5y \).

Rem. **Well-ordering principle** states \(S \subseteq \mathbb{N}, S \neq \emptyset \), then \(S \) has a least element.

The validity of the principle of induction and strong induction follows from WOP.
To prove a statement holds for recursively defined objects, use

Base case: the result holds for all elements specified in the base case

Recursive step: show if the statement holds for each element used to construct new elements, then it holds for these new elements.

E.g. Binary trees can be constructed recursively.

Define height $h(T)$ recursively.

Base case ($T = \text{root}$): $h(T) = 0$

Recursive step ($T = T_1 \cdot T_2$): $h(T) = 1 + \max (h(T_1), h(T_2))$

Define number of vertices $n(T)$ recursively.

Base case ($T = \text{root}$): $n(T) = 1$.

Recursive step ($T = T_1 \cdot T_2$): $n(T) = 1 + n(T_1) + n(T_2)$.

Prove $n(T) \leq 2^{h(T)+1} - 1$ for any binary tree T.

Pf: **Base case:** $T = \text{root}$. Then $n(T) = 1$ and $h(T) = 0$. Statement holds because $1 \leq 2^{0+1} - 1 = 1$

Recursive step: Consider $T = T_1 \cdot T_2$. Want to show $n(T) \leq 2^{h(T)+1} - 1$.
Notice that
\[
n(T) \overset{\text{def}}{=} 1 + n(T_1) + n(T_2)
\]
\[
\leq 1 + (2^{h(T_1)} - 1) + (2^{h(T_2)} - 1)
\]
\[
= 2^{h(T_1)} + 2^{h(T_2)} - 1
\]
\[
\leq 2 \cdot \max \left(2^{h(T_1)} + 1, 2^{h(T_2)} + 1 \right) - 1
\]
\[
= 2 \cdot 2^{\max (h(T_1), h(T_2)) + 1} - 1
\]
\[
= 2^{h(T)} - 1
\]
\[
= 2^{h(T) + 1} - 1.
\]